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ABSTRACT OF THE DISSERTATION 

Lymphatic Filariasis: Host and Parasite Factors and the Pathogenesis of Systemic Adverse 

Events Following Treatment 

by 

Britt Juul Andersen 

Doctor of Philosophy in Biology and Biomedical Sciences 

Molecular Microbiology and Microbial Pathogenesis 

Washington University in St. Louis, 2020 

Professor Gary J. Weil, Chair 

 

Lymphatic filariasis (LF) is a neglected tropical disease caused by the nematode parasites 

Wuchereria bancrofti, Brugia malayi and B. timori. The primary tool used by the Global 

Program to Eliminate LF is mass drug administration (MDA), and some 500 million people take 

the medications each year. Mild to moderate adverse events (AEs) are common after LF 

treatment, and these pose a major challenge for the LF elimination program. To better understand 

the pathogenesis of AEs, we studied patients from LF treatment trials in Côte d’Ivoire and Papua 

New Guinea, where plasma and leucocytes were collected pre and post-treatment and subjects 

were monitored for AEs. We found that plasma levels of filarial antigen and DNA increased 

post-treatment in individuals with AEs. We discovered that a whole range of filarial antigens 

with the AD12 epitope circulate in the bloodstream 24 hours after treatment, in contrasts to the 

widely accepted notion that the high molecular weight Circulating Filarial Antigen (CFA) is the 

only antigen present the blood of W. bancrofti-infected individuals. We then investigated the  
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cytokine response during AEs by measuring 27 cytokines pre and post-treatment. We identified 

11-16 cytokines that increased post-treatment in individuals with AEs. This complex cytokine 

response could be consistent with a LPS-like response (caused by exposure to Wolbachia 

lipoprotein) with increases in TNF-α, IL-1β, IL-6, IL-1RA and IL-10. 

To further delineate the host response during AEs, a transcriptomic analysis was 

completed. Global RNA sequencing was performed for 9 individuals with systemic AEs and for 

9 matched controls without AEs. Differential gene expression analysis identified a significant 

transcriptional signature associated with post-treatment AEs; 744 genes were significantly up-

regulated in the AE group (post versus pre-treatment, paired). These genes were enriched for 

many biological pathways, including pro-inflammatory pathways such as TLR and NF-kappa B 

signaling. A machine-learning tool was used to prioritize the genes up-regulated post-treatment 

in individuals with AEs, in order to identify the genes that had the best correlation between 

expression levels and AE classification, and in order to identify a subset of genes to validate with 

RT-qPCR. Increased expression of seven out of the top eight genes identified were validated 

with RT-qPCR. TLR2 was identified by the machine-learning tool to be highly correlated to the 

development of AEs, and this gene was confirmed to increase post-treatment in individuals with 

AEs by RT-qPCR. These results suggest that Wolbachia lipoprotein is involved in AE 

development because it is known to signal though TLR2-TLR6 and activate downstream NF-

kappa B. Additional support for this hypothesis was the discovery that LPS Binding Protein 

(LBP) increased post-treatment in individuals with AEs, because LBP can shuttle lipoproteins to 

TLR2. Improved understanding of the pathogenesis of AEs may lead to improved management 

or prevention that could increase MDA compliance and hasten LF elimination. 
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1.1  Introduction to lymphatic filariae. 

1.1.1  Overview. 

Lymphatic filariasis (LF) is an important neglected tropical disease that is caused 

by threadlike nematode parasites that live in the lymphatic system of the human host. 

Three different lymphatic filarial species infect humans: Wuchereria bancrofti, Brugia 

malayi and B. timori (1). W. bancrofti is the most widespread and it is responsible for 

over 90% of human LF infections, whereas B. malayi and B. timori are limited to specific 

regions in Asia (2). In the year 2000 over 120 million people were infected with one of 

the three LF-causing parasites, and about 40 million of these individuals were disfigured 

and disabled by the disease (3). It is estimated that 856 million individuals in 52 countries 

across the world are currently threatened by LF and require preventative chemotherapy or 

treatment in order to stop the spread of the infection (3). 

 

1.1.2  Historical background. 

Lymphatic filariasis is an ancient disease that was first described by Hindu and 

Persian doctors around 600 B.C. (4). However, illustrations from as early as 1,500 B.C. 

that possibly portray individuals suffering from elephantiasis have been found in Egypt 

(Figure 1.1A) (4). Additionally, sculptures from around 500 B.C. from the Nok 

civilization in West Africa may show scrotal swelling (hydroceles), another characteristic 

of LF (Figure 1.1B) (5). The first definitive reports on LF are from the 16th century, when 

the Dutch explorer Jan Huygen Linschoten (1563-1611) visited Goa, and reported that 

the natives were “all born with one of their legs and one foot from the knee downwards 

as thick as an elephants leg” (6). 
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The first scientific discoveries regarding filarariasis occurred in the 19th century 

when the larval form of the parasite (microfilariae or Mf) were discovered in hydrocele 

fluid from a Cuban man in 1863 (7), and in the blood of an infected individual in 1872 

(8). Joseph Bancroft discovered the first adult female worm in a lymph node ulcer in 

1877 (4), and this filarial species was later named after him, and we now know it as W. 

bancrofti. The adult male parasite was first discovered in 1888 by Sibthorpe (9). The 

most prominent discovery in early filariasis research was made by the father of tropical 

medicine, Sir Patrick Manson, in 1877. He found Mf in the stomach of bloodsucking 

mosquitos and thereby identified the vector of the parasite, and helped elucidate the 

parasite life cycle (10). This discovery is considered the birth of medical entomology, and 

as one of the most significant discoveries in the field of tropical medicine, with 

implications that went beyond helminthology into research areas such as malaria and 

arboviruses. 

Despite the advancement in the field of LF research, treatment for the disease was 

not available until the mid 20th century when it was discovered that diethylcarbamazine 

(DEC) showed remarkable effects in the treatment of Litomosoides carinii (now L. 

sigmodontis, a filarial nematode that infects cotton rats) and Dirofilaria immitis (a filarial 

nematode that infects dogs), and was able to clear W. bancrofti Mf from the blood of 

infected humans (11-13). Ivermectin (IMV) was introduced in 1982 as a treatment for 

onchocerciasis (14), and the use of this drug was expanded for the use in W. bancrofti 

infected individuals just a few years later (15). In 1995 it was discovered that co-

administration of both DEC and IVM together was significantly more effective than 

either drug on its own (16). Finally, in 1997-1998 the third main anti-filarial drug, 
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albendazole (ALB), was discovered to increase the efficacy of DEC and IVM when 

added to either drug, and administered as a two-drug combination treatment (17-19). In 

2000 the World Health Organization (WHO) launched the Global Program to Eliminate 

LF (GPELF) (20). 

 

1.1.3  Life cycle. 

The W. bancrofti lifecycle is depicted in Figure 1.2, and it is representative of all 

the LF-causing filarial nematodes, as their lifecycles are very similar. The LF-causing 

filarial nematodes are vector-born, and are transmitted by mosquitos from a number of 

genera (including Culex, Anopheles, Mansonia, Ochlerotatus, Coquillettidia and Aedes) 

depending on the geographical location (21). The 4-8 cm long adult parasites live in the 

lymphatic vessels of the human host, and the females release first stage larvae (L1) 

commonly called microfilariae (Mf) into the blood (1). A single adult female worm can 

release up to 10,000 Mf per day (22), and they measure approximately 260 x 8 um (1). 

The lifespan of Mf is thought to be around one year (23). The Mf circulate in the blood of 

infected individuals, where they have an interesting periodicity. W. bancrofti Mf are 

usually most abundant in the circulation during the night (nocturnal periodicity) when the 

vector mosquito typically takes blood meals from the host, whereas they sequester in the 

deep vascular beds during the day (1). The Mf are ingested by female mosquitos when 

the mosquito feeds on an infected human host. The Mf then migrate to the thoracic 

muscle of the mosquito, where they undergo two molts (from L1 to L2 and from L2 to 

L3) to become the infective third-stage larvae (L3). The larval development in the 

mosquito takes a minimum of 10-12 days. Mature L3 migrate to the mouthparts of the 
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mosquito where they can initiate new infections when they are transferred to humans 

with the mosquito’s next blood meal. Infective larvae migrate to lymphatic vessels in the 

human and grow to develop into mature adult worms over a period of several months. If 

both male and female worms parasitize the same host they will reproduce, and the 

females will start producing Mf, and the cycle can continue (1). The reproductive life 

span of lymphatic filarial parasites is an average 4 to 6 years. 

1.1.4 Wolbachia endobacteria of filarial nematodes. 

Wolbachia are intracellular endosymbiotic bacteria that infect insects and 

nematodes. The Wolbachia genus belongs to the family Anaplasmataceae and the order 

Rickettsiales (alphaproteobacteria). There is a single species in the Wolbachia genus:  

Wolbachia pipientis (24). Wolbachia was discovered to be an essential endosymbiont of 

most filarial worms in 1999 (25). Many filarial nematodes, such as the lymphatic filariae 

(W. bancrofti and the Brugia species) (26) and Onchocerca volvulus (causes 

onchocerciasis) (27) are dependent on the Wolbachia endosymbiont for development, 

fertility and survival, and the bacteria are maternally inherited (28). However, Wolbachia 

is absent from Loa loa (29), the rodent filaria Acanthocheilonema viteae (30), the deer 

parasite Onchocerca flexuosa (31) and many other species that infect wildlife (32). In W. 

bancrofti and the brugian species of filarial nematodes, Wolbachia are present in all 

developmental stages, with low amounts in the vector stages and increased amounts in 

the mammalian stages (30, 33-35). In adult worms Wolbachia localizes near the 

reproductive system and lateral cords, whereas it is absent from the nervous system, 

digestive system and the muscles (Figure 1.3). 
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1.2  Lymphatic filariasis disease and treatment. 

1.2.1 Filarial disease manifestations. 

LF and the host’s inflammatory response to the parasite can lead to severe 

morbidity and disability with lymphedema, hydrocele, and elephantiasis (Figure 1.4). LF 

is considered to be the second most common cause of long-term disability worldwide 

after mental illness (19, 36). The clinical manifestations of LF range from subclinical to 

pronounced chronic disease causing severe disability. Most individuals infected with LF-

causing parasites have no clinical symptoms, even though Mf are present in their blood 

(37). Acute manifestations of LF include acute filarial lymphangitis (AFL) and acute 

dermatolymphangioadenitis (ADLA). AFL is thought to be induced by the death of adult 

parasites, and it presents as acute inflammation of a lymphatic vessel. ADLA, on the 

other hand, is caused by a secondary bacterial infection and is often associated with a 

history of injury to the skin. ADLA typically causes severe pain, fever and chills (38, 39).  

Recurrent acute attacks represent major risk factors for the development of 

chronic disease manifestations. It was estimated that approximately 40 million 

individuals live with symptoms of chronic LF, and this includes an estimated 25 million 

men with hydroceles and an estimated 15 million individuals with lymphedema or 

elephantiasis (22). Hydroceles (Figure 1.4A) are the most common chronic presentations 

of LF, and they are caused by the accumulation of lymph fluid in the tunica vaginalis of 

the scrotal sac, in addition to possible thickening of the spermatic cord and changes in the 

skin and subcutaneous tissue around the scrotum (40). Filarial hydroceles can have a 

severe negative impact on health and result in stigmatization of the affected men (41-43). 

Chronic lymphedema is another common manifestation of filarial disease, and it typically 
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affects the lower legs (Figure 1.4B). Adult parasites reside in the lymphatic system and 

can therefore cause damage to this system. Although live worms do not induce strong 

inflammatory responses, granulomatous reactions occur around dying worms (44, 45), 

and this can lead to lymphatic damage. Over time the edema worsens, and it can progress 

to elephantiasis (Figure 1.4C/D), which is characterized by deep skin folds and skin 

fissuring that can provide pathways for entry of microorganisms (46). These secondary 

bacterial and fungal infections can in turn accelerate disease progression and worsen 

symptoms. Lymphedema and elephantiasis also have severe negative impacts on the 

afflicted individuals and their caretakers (47). 

 

1.2.2  Immune response during lymphatic filariasis infection. 

Helminths differ from other types of pathogens because they are multicellular, 

typically do not reproduce within the host, are highly motile, and often parasitize the host 

for many years. Helminth infections therefore induce distinct types of immune responses. 

Other microorganisms such as bacteria and viruses normally elicit a pro-inflammatory 

Th1 immune response, whereas the anti-inflammatory Th2 response usually dominates in 

helminth infections. The typical host immune response seen in human filarial infections 

involves the production of cytokines: IL-4, IL-5, IL-9, IL-10 and IL-13; the antibody 

isotypes IgG1, IgG4 and IgE; and expanded populations of eosinophils and 

immunoregulatory monocytes (48). One study concluded that filarial infections are 

associated with decreased parasite specific Th1 responses, such as decreased IL-2 and 

IFN-γ, but normal or increased levels of parasite antigen-specific Th2 cytokines, such as 

IL-4, IL-5 and IL-10 (49). Various studies have compared the cytokine profiles in the 
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following clinical groups of filariasis patients: asymptomatic filarial-infected patients 

(INF), individuals with chronic lymphatic obstruction (CP), and endemic normals with no 

circulating Mf (EN). In a study from 1997, peripheral blood mononuclear cells (PBMCs) 

were isolated from patients in the different clinical categories, and stimulated with filarial 

antigens (50). This study concluded that cytokine profiles of PBMCs were different 

between these categorized clinical groups, with INF PBMCs expressing elevated Th2 

type cytokines like IL-4, IL-5 and IL-10 and decreased levels of IL-2 and IFN-γ in 

response to parasite antigen, whereas CP individuals produced elevated levels of both 

Th1 and Th2 type cytokines in response to parasite antigen. It is hypothesized that pro-

inflammatory immune responses are responsible for the symptoms observed in CP 

patients. However, most individuals infected with LF are asymptomatic, and it is believed 

that a Th2 dominant response allows the immune system to tolerate the infection without 

establishing a symptom-producing pro-inflammatory environment. In a review from 

2001, Allen et al. suggests the following scenario: Live filarial parasites secrete 

immunomodulatory molecules that induce Th2 responses, whereas dead parasites release 

different substances for example from intracellular Wolbachia, leading to the activation 

of macrophages with the production of pro-inflammatory cytokines and a Th1 type 

response. As more parasites die the balance shifts from a Th2 response to a Th1 response 

producing the symptoms of chronic filarial infections (51). Using this model to consider 

what happens after anti-filarial treatment one could hypothesize that microfilariacidal 

drugs, such as IVM and DEC, would result in an immediate shift from a Th2 to a Th1 

response due to the huge number of dead or dying Mf. 

 



www.manaraa.com

	 10	

1.2.3  Treatment of lymphatic filariasis. 

The World Health Organization (WHO) launched the Global Program to 

Eliminate LF (GPELF) in 2000 with the goal of eliminating LF as a public health 

problem by 2020 (2). To reach this goal, mass drug administration (MDA) programs have 

been implemented in 61 countries across the world, and approximately 6 billion doses of 

anti-filarial medications have been distributed, making GPELF the largest public health 

intervention to date based on MDA (Figure 1.5) (3, 52). Historically, LF was treated with 

a 12-day course of DEC (19). The current treatments used in LF MDA programs include 

annual distribution of two-drug regimens: IVM (150 µg/kg) plus ALB (400 mg) in areas 

co-endemic for onchocerciasis, or DEC (6 mg/kg) plus ALB (400 mg) in the rest of the 

world. Exceptions to the two-drug regimens include areas that are co-endemic for L. loa 

where only ALB can be safely used (400 mg. ALB preferably twice a year), and the new 

triple therapy (“IDA”, discussed below). LF MDA programs have been successful in 

decreasing LF infection parameters such as microfilaremia (Mf present in the blood), 

filarial antigenemia and anti-filarial antibody rates in treated populations (53). The 

implementation of MDA is based on community diagnosis to identify endemic areas 

followed by distribution of anti-filarial medications annually for 5-8 years to entire at-risk 

populations. There is a clear correlation between the number of completed treatment 

rounds and infection clearance (54). The GPELF strategy has been shown to be feasible  

and cost-effective (55, 56), in large part because the drugs are donated by pharmaceutical 

partners. 

A new and exciting breakthrough in the field of LF treatment was the discovery 

that co-administration of all three anti-filarial drugs, IVM, DEC and ALB (sometimes 
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referred to as IDA), had increased efficacy against LF. The first study was conducted in 

Papua New Guinea and published in 2016 (57). In this pilot study the efficacy, safety, 

and pharmacokinetics of single-dose IVM, DEC and ALB was tested in W. bancrofti-

infected adults. Twelve individuals were treated with the new triple therapy and twelve 

individuals were treated with the standard LF treatment for Papua New Guinea (DEC 

plus ALB). The results were surprisingly impressive as all 12 individuals who received 

the triple therapy were Mf negative one year post-treatment, whereas only 1 of 12 

individuals treated with standard double therapy were Mf negative at one year post-

treatment (57). Larger clinical trials to test the efficacy of the triple therapy are underway 

in Papua New Guinea (Clinicaltrials.gov NCT # 01975441) and Côte d'Ivoire 

(Clinicaltrials.gov NCT # 02974049), and the new data appears to confirm the finding 

that IDA is more effective than the standard LF treatment regimens (58, 59). The safety 

of the triple therapy treatment is currently being evaluated in large community-based 

studies in India, Indonesia, Haiti, Papua New Guinea and Fiji, where over 10,000 

individuals have been treated with IDA (ClinicalTrials.gov Identifier: NCT02899936). 

Based on this extensive safety data, the WHO recently recommended IDA as the 

preferred treatment for certain LF endemic areas (60).  

 

1.2.4  Mechanism of action of the anti-filarial drugs. 

ALB binds to nematode tubulin thereby inhibiting polymerization and the 

assembly into microtubules. This causes degenerative changes in the tegument and 

intestinal cells of the parasite, which results in impaired uptake of glucose, and the 

glycogen stores in the parasite are depleted (61). The degenerative alterations also result 
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in decreased production of adenosine triphosphate by the parasite, which is an important 

source of energy required for survival. Ultimately the parasite is immobilized because of 

this diminished energy production, and it eventually dies. 

DEC is an antifilarial drug that is structurally dissimilar from ALB and IVM, and 

it has been used in the treatment of LF since 1947. DEC inhibits arachidonic acid 

metabolism and inducible nitric oxide synthase (62). The mode of action by which DEC 

kills LF parasites is still poorly understood. It is particularly remarkable that DEC exerts 

its anti-filarial effects within minutes in vivo with decreasing Mf counts, but it has 

virtually no effect on Mf in vitro (63). This indicates that DEC requires host factors for 

its activity, and previous work has suggested that the innate immune system is involved 

(64). DEC decreases circulating Mf within days of treatment, and is also believed to have 

some macrofilaricidal effect (65).  

IVM is an avermectin compound that was initially derived from the bacterium 

Streptomyces avermitilis (66). Similar to DEC, IVM has little effect on filarial parasites 

in vitro (67), and it has been shown to interact with the host immune system (68). The 

mode of action by which IVM kills Mf is not completely delineated, but it interferes with 

glutamate-gated ion channels that can affect parasite contractility and release of 

immunomodulatory molecules (68). The parasite’s nervous system and muscular system 

is also affected by IVM. 
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1.3  Adverse events after anti-filarial treatment. 

1.3.1  Overview and impact of adverse events. 

The medications used for LF MDA; ALB, IVM and DEC, have well-established 

safety profiles, and severe adverse events are extremely rare (69-72). However, mild to 

moderate adverse events (AEs), such as fever, myalgia, headache and hypotension, are 

common in LF-infected individuals (2, 61, 71). The fear of AEs in communities receiving 

MDA is a main factor that reduces compliance (73, 74). Minimizing the impact of AEs 

has therefore been identified as a key component for successful MDA programs (73). 

Prior studies have shown that AEs are almost exclusively observed in people with 

microfilaremia, and the severity of AEs is strongly correlated with Mf counts (75, 76). 

Uninfected individuals very rarely experience AEs after LF MDA (77), so the AEs 

experienced by LF-infected individuals are not a result of direct drug toxicity. These 

observations have led to the hypothesis that AEs are caused by immune responses to dead 

or dying Mf and adult worms.  

In contrary to the mild and moderate AEs observed when DEC and IVM are 

administered to LF-infected individuals, both of these drugs can cause severe AEs 

including encephalopathy and death when used in individuals infected with L. loa, that 

can exhibit very high Mf levels (78, 79). Additionally, DEC can result in loss of vision 

and other severe eye damage if administered to individuals infected with O. volvulus (80, 

81). DEC is therefore not used in areas in Africa where LF is co-endemic with O. 

volvulus or L. loa. IVM is not used in areas that are co-endemic for L. loa, unless it is 

meso or hyperendemic for O. volvulus in which case the risk of blindness caused by 

onchocerciasis outweighs the risk of AEs caused by IVM treatment. 
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1.3.2  Host responses and adverse events following treatment of LF. 

Only a few studies have examined cytokine changes following anti-filarial 

treatment, and the majority of these studies are older and therefore used the then 

recommended, but now outdated, treatment for LF, a multiday course of DEC. IL-5 has 

been shown to increase in sera from patients infected with W. bancrofti immediately 

following DEC treatment (82, 83) leading to a transient decrease in peripheral 

eosinophils as they migrate to the tissue, followed by peripheral eosinophilia at 4-6 days 

post-treatment (82). IL-5 has not been linked to AEs following treatment. However, other 

cytokines have been shown to increase after anti-filarial treatment, and have been 

implicated in the development of AEs. A study from 1994 collected plasma from 10 W. 

bancrofti-infected men immediately before and 2 and 6 hours after the first dose of a 

multiday DEC treatment, and measured IL-6 and TNF-α levels in the plasma. They found 

both IL-6 and TNF-α were increased in plasma collected from the 5 individuals with AEs 

post-treatment (84). Another study also found a strong correlation between inflammatory 

mediators and the severity of AEs following treatment. In this study from 2000 they used 

ELISAs to measure various cytokine levels before and after a 12-day treatment with daily 

doses of DEC in 29 B. malayi infected individuals. They found that increased post-

treatment levels of IL-6, lipopolysaccharide binding protein (LBP), IL-10 and soluble 

TNF receptors (sTNF-R) were correlated with systemic reactions after DEC treatment of 

filarial patients, with the strongest association being with IL-6 and LBP. In this study 

post-treatment blood was collected at 2, 4, 8, 24, 32, 48 and 120 hours after the initial 

DEC dose, and IL-6 levels peaked between 8-24 hours whereas LBP levels peaked 
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between 24-48 hours (85). AEs after anti-filarial treatment peak at around 24-48 hours 

post-treatment (75, 86-89). In agreement with these result another study concluded that 

IL-6, but not TNF- α was correlated with AEs, and peaked at 24 hours post-treatment; 

however only four B. malayi infected individuals were included in that study (87). A 

single published study found no correlation between IL-6 and AEs following a single 

dose of DEC in a cohort of 47 W. bancrofti-infected men in Tanzania. All study 

participants developed AEs, but the research group found no correlation between severity 

of AEs and IL-6 levels post-treatment (90). Increased post-treatment levels of IL-6 have 

also been associated with the development of AEs in onchocerciasis patients after 

treatment (84, 91). All the previously published studies that focused on AEs after LF-

treatment had small sample sizes, and they used the standard of care for their time, 

instead of the current WHO recommended treatments for LF.  

 

1.3.3  Wolbachia as a cause of adverse events. 

Wolbachia has been hypothesized to be involved in the development of post-

treatment AEs in LF-infected individuals since its re-discovery in these parasites in 1999. 

A popular hypothesis to explain AEs is that the Wolbachia endosymbiont are released 

from dying filarial worms and Mf after treatment, and that this is the main cause of AEs. 

A study that supports this scenario measured Wolbachia DNA in human plasma before 

and after treatment in B. malayi infected adults treated daily for 12 days with DEC. Post-

treatment blood was collected at 2, 4, 8, 24, 32, 48 and 120 hours after the first dose, and 

it was concluded that people with moderate and severe AEs had more Wolbachia positive 

post-treatment samples when compared to people with mild or no AEs. This study also 
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concluded that the DNA was from whole bacterial cells and not free DNA, because after 

the plasma was centrifuged Wolbachia DNA was only detected in the pellet (92).   

 A more detailed model for how Wolbachia induces AEs was introduced by Taylor 

et al. in two papers from 2000-2001, where the authors state that Wolbachia can release 

LPS-like molecules that activate the innate inflammatory response through toll like 

receptors (TLRs) leading to either the symptoms of chronic infections or the AEs 

following treatment (Figure 1.6) (93, 94). This hypothesis was based on the discovery of 

a B. malayi derived LPS-like molecule that was heat-stable, reacted positively in the 

Limulus amoebocyte lysate (LAL) assay, and could be inhibited by polymyxin B. This 

soluble extract is a potent inducer of TNF- α, IL-1β and nitric oxide (NO) in murine 

macrophages. B. malayi extract cannot induce these cytokines in macrophages from LPS-

nonresponsive C3H/HeJ mice (TLR4 defective due to mutation), suggesting that 

signaling occurs through TLR4. Additionally, extracts from the filarial worm A. viteae 

(no Wolbachia) do not elicit this pro-inflammatory response in macrophages, and did not 

react positively in the LAL assay, indicating that the LPS-like molecule in the B. malayi 

extracts originated from Wolbachia. Live filarial parasites and culture supernatants failed 

to elicit inflammatory responses from macrophages, so they hypothesized that the 

Wolbachia substrate is only released from dying worms. The Taylor group later revised 

their initial hypothesis and replaced TLR4 with TLR2-TLR6 in their proposed Wolbachia 

LPS-like signaling pathway (95). In this publication they used cell lines transfected with 

human TLRs and macrophages from TLR and adapter molecule deficient mice, and 

observed TLR2-TLR6 activation by the Wolbachia LPS-like molecule utilizing the 

mediators MyD88 and TIRAP/Mal. From the literature it is known that TLR2 can bind 
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bacterial lipoproteins, LPS and other bacterial components and activate NF-κB that in 

turn induces pro-inflammatory cytokines such as IL-6 (96, 97). 

Interestingly, the B. malayi-associated Wolbachia genome was published in 2004-

2005 (98, 99), and it did not include the homologs of the genes responsible for the 

biosynthesis of lipid A (a component of LPS). It is therefore unlikely that B. malayi 

Wolbachia contains LPS in its cell wall (99). However, the published Wolbachia genome 

and bioinformatics methods have been used to predict the presence of two putative 

candidate Wolbachia lipoproteins: peptidoglycan-associated lipoprotein (PAL), and a 

type IV secretion system protein (VirB6) (100). In this same publication Turner et al. 

conclude that a synthetic, lipolated version of the N-terminus of Wolbachia PAL, WoLP, 

can signal through TLR2-TLR6, and induce pro-inflammatory responses in vitro (murine 

and human cells) and in vivo (mice). In a 2014 publication, Tamarozzi et al. conclude that 

WoLP can activate human neutrophils in vitro as shown by changes in their cell shape 

and IL-8 production upon exposure to this stimulus (101). Recently a proteomics 

approach has confirmed the presence of PAL in extracts of B. malayi, and it was one of 

the most abundant proteins found in extracts from adult female worms. Additionally 

immunogold labeling showed that the lipoprotein was localized in the bacterial 

membrane (102). There is still insufficient evidence in vivo to show that endosymbiotic 

bacteria provide a pro-inflammatory stimulus, and there is no information about levels of 

this lipoprotein/LPS-like substance is post-treatment plasma of LF-infected individuals. 

The major surface protein of Wolbachia (WSP) has also been identified to 

activate the innate immune response through TLR signaling (103). In this study, cultured 

whole blood cells from O. volvulus infected individuals were stimulated with purified 
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recombinant WSP, and found to release TNF-α, IL-12 and IL-8 in response to 

stimulation. These results were confirmed in PMBCs isolated from 3 healthy Europeans, 

where rWSP strongly stimulated the release of TNF-α, IL-1β, IL-6, and IL-8. This 

immune response was dependent on TLR2 and TLR4. WSP has been shown to be 

antigenic, and WSP-specific antibodies have been identified in human sera from infected 

individuals, with CP patients having the highest level of antibodies (104). 

In a study from 2008 Supali et al. demonstrated that a six-week treatment course 

of doxycycline before DEC/ALB anti-filarial treatment decreased the risk of AEs (105). 

This was a double-blind, randomized, placebo-controlled field trial of 161 B. malayi 

infected persons. After the doxycycline treatment the Wolbachia load was decreased by 

98%, and AEs following DEC/ALB were less in the group that received pre-treatment 

doxycycline when compared to those who received pre-treatment placebo. However, at 

the one-year follow-up microfilaremia was reduced by 87.5% in patients receiving both 

doxycycline and DEC/ALB, but only 26.7% in individuals receiving only DEC/ALB, so 

it is unclear if the decrease in AEs was due to decreased Mf loads or decreased 

Wolbachia after the doxycycline treatment. 

An onchocerciasis mouse model has been used to study the role of Wolbachia in 

eliciting pro-inflammatory pathways causing corneal inflammatory pathology (106). In 

this study various filarial worm extracts were injected into the murine corneal stroma, and 

the resulting pathology scored. It was concluded that extracts from doxycycline treated 

worms (decreased Wolbachia) induced less pathology in the cornea when compared to 

non-treated worm extracts. The group also concluded that Wolbachia containing extracts 

from B. malayi resulted in more inflammation when compared to A. viteae extracts. 
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Finally, the LPS-hyporesponsive C3H/HeJ mice demonstrated less pathology indicating 

signaling through TLR4. The previously mentioned WoLP has also been shown to induce 

corneal inflammation using this model (100). 

It is difficult to attribute all AEs following anti-filarial treatment to Wolbachia. L. 

loa is a Wolbachia-free filarial nematode that infects humans, and it is responsible for the 

most severe post-treatment AEs observed after LF MDA. Individuals with high L. loa 

infection burdens can develop encephalopathy and die after IVM treatment, and this is 

not observed in LF patients (79). A group has reported that rodents infected with A. 

viteae develop severe AEs and die following effective microfilaricidal therapy, whereas 

animals infected with the Wolbachia-containing B. malayi tolerate corresponding 

treatment (107). They conclude that AEs might be caused by Mf-derived components 

different from Wolbachia-released factors.  

 

1.3.4  Circulating immune complexes as a cause of adverse events. 

Immune complexes (IC) are heterogeneous high molecular-weight aggregates of 

antigens, antibodies and components of the complement cascade (108), and when they 

circulate or accumulate in tissue they activate pro-inflammatory pathways. A paper from 

1991 hypothesized that AEs following DEC or IVM treatment could be caused by 

immune complexes triggered by the release of filarial antigens following treatment (109). 

In this double-blind study 60 patients infected with W. bancrofti were randomized to 

receive a 14-day treatment of DEC or a single dose of IVM, and various immunological 

changes were followed after treatment. The results show that 24-48 hours after treatment 

antibodies to microfilarial excretory-secretory (ES) antigens decreased, with a concurrent 
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increase in filarial HC 11 antigens (HC 11 is a phosphorylcholine determinant present in 

all filarial worm stages), and these changes were temporally associated with the onset of 

AEs. The authors reported that the serological changes occurred in the majority of 

patients, but the magnitude was significantly greater in individuals who developed AEs. 

It is possible that the results might have been more significant and different earlier, if the 

data had been analyzed using only individuals with AEs. 

A study from 1988 also concluded that filarial ES antigen titer increased after DEC 

treatment, and this group additionally observed an increase in IC titer after treatment 

(110). In this study 27 W. bancrofti-infected patients were treated for 12 days with DEC, 

and blood was collected before and 7 days after the first DEC dose. An anti C3 ELISA 

was used to measure ICs. The mean ES antigen titers increased from 732 to 1633 on day 

7, whereas filarial-specific IgG and IgM antibody levels decreased during this time. Only 

3 individuals had detectable filarial IC before treatment, but a sudden increase of mean 

IC titer of 73,020 at day 7 was observed in these individuals. 

More recently Senbagavalli et al. hypothesized that the interaction of circulating 

immune complexes (CIC) and complement with the host innate immune system is a 

major contributing factor in the development of lymphatic pathological change and/or 

host resistance (111). In this paper from 2011 the authors determined the levels of CIC in 

the different clinical categories of LF (INF, CP and EN) in a total of 120 individuals. 

CICs were assayed by using a polyethylene glycol (PEG) precipitation method and an 

enzyme immunoassay (EIA), and irrespective of the method used INF had significantly 

(P < 0.001) higher levels of CIC than either CP or EN. This result contradicts previously 

published data that reports highest levels of CIC in CP individuals (112). This paper also 
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describes how cultured granulocytes from healthy controls respond by cytokine release 

when stimulated with PEG-precipitated IC from INF, CP and EN plasma. IC from INF 

and CP induced significantly higher levels of IL-6 and IL-17 when compared to EN. In 

contrast to the pro-inflammatory cytokines, IL-4, was reduced when granulocytes were 

incubated with IC from INF and CP compared to EN. No significant difference was 

found for other cytokines, such as TNF-α, IL-1β and IL-10. 

 

1.3.5  Host gene expression before and after treatment in lymphatic filariasis patients. 

There are no published human RNA sequencing data for LF infections. Semnani 

et al. used microarrays to examine the effect of treatment on gene expression in 

monocytes from LF patients (113). PBMCs were isolated from 4 W. bancrofti-infected 

individuals before treatment and at 8 months after IVM/ALB treatment. The results 

showed that 47 genes were repressed and 41 genes were induced in paired samples (pre- 

versus post-treatment). Utilizing hierarchical clustering they identified distinct sets of 

genes that were highly expressed pre-treatment and repressed post-treatment, and 

opposite. Genes induced post-treatment included many members of the heat shock 

protein (HSP) family with ATP binding activity, and genes involved in signal 

transduction, such as IL-1 receptor type I. Among the genes repressed in the post-

treatment samples were those involved in signaling (chemokine receptor 7, mitogen- 

activated protein kinase 8, Epstein-Barr virus-induced gene 2), transcription and protein 

metabolism. Interestingly, this study also examined the difference in gene expression 

between monocytes from LF infected and un-infected individuals. Only 62 genes (8 

repressed and 54 induced in W. bancrofti-infected individuals) out of the possible 30,000 
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were significantly different in monocytes of W. bancrofti-infected versus W. bancrofti-

uninfected individuals. The genes over-expressed in LF patients were involved in 

apoptosis (IL-1β, BCL2A1, and MOAP1) and cell adhesion. Treatment with single-dose 

IVM plus ALB normalized monocyte gene expression at 8 months. Host gene expression 

has not been correlated to the development of AEs after treatment for LF. 

 

1.4  Obstacles and resources for studying adverse events after anti-filarial treatment. 

1.4.1  Obstacles. 

In vitro culture systems and convenient animal models are not available for the 

most clinically relevant and important filarial nematodes, W. bancrofti and O. volvulus. 

B. malayi and the Wolbachia-free A. viteae, on the other hand, can be maintained in the 

laboratory in gerbils (114-116). The filarial nematode Litomosoides sigmondontis 

normally infects cotton rats, but it can also be maintained in a mouse model (116). Even 

with these possible model systems, studying AEs in an animal model would be very 

complex. The drugs that cause AEs (IVM and DEC) only exert their anti-filarial effects 

in vivo when they can work with the host immune system. It is unclear how mouse or 

gerbil immune systems differ in regards to treatment efficacy and AE rates and 

presentation. Another problem would be how to measure AEs in the animal. Therefore, in 

my thesis I focus only on the study of AE pathogenesis in humans, and this approach of 

course has its own limitations. It is impossible to control for all possible variables in a 

human sample set. For example, gene expression can be influenced by age, sex, diet, 

season, general health status and a wealth of other factors. In order to minimize these 

confounding variables as much as possible, we decided to look at the change in gene 
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expression (and filarial components) in the same individuals just before treatment and at 

24 hours post-treatment. This short 24-hour timeframe minimizes the effects of other 

variables; therefore treatment and/or the development of AEs is the main factor that 

influences the change in gene expression during this time. We also collected as much 

information as possible for each individual including detailed clinical data, so a metadata 

analysis could be completed. 

 

1.4.2  Resources. 

The most crucial stage of this project was to collect appropriate human samples in 

order to test our hypotheses. Our group is spearheading the broad research project Death 

to Onchocerciasis and Lymphatic Filariasis (DOLF, www.dolf.wustl.edu). DOLF is 

currently involved in clinical and community trials in over ten LF-endemic countries, and 

this has allowed me to access valuable human samples and clinical data. Additionally, 

our group has developed a long-lasting collaboration with Dr. Mitreva’s group at the 

McDonnell Genome Institute (MGI) at Washington University, which has been 

invaluable during the analysis stage for the complex RNA-seq data. 

 

1.5  Aims and scope of thesis. 

It is well established that AEs occur commonly in LF-infected individuals after 

treatment, but the pathogenesis is still not completely understood. State of the art 

comprehensive studies that considered both filarial and host involvement in AE 

development were lacking. In this study we therefore examined the possible immune-

stimulatory filarial components that are released post-treatment, and the host immune 



www.manaraa.com

	 24	

response during AEs. The objective of this thesis was to characterize the host response 

during post-treatment AEs, and to identify possible parasite components that trigger AEs. 

We hypothesized that AEs are associated with unique host response patterns, and that 

filarial and/or Wolbachia components are released post-treatment and these foreign 

antigens and/or CIC can trigger AEs.  

The fear of AEs after treatment is an important factor leads to non-compliance 

with LF MDA programs. Understanding the underlying mechanisms for the development 

of AEs can help to improve management, and increase the compliance to MDA 

programs, and this can have a positive impact on millions of LF infected people that will 

be treated over the next many years. This will be particularly important for the new triple 

therapy, because this treatment might become more mainstream within the next years. 

We will therefore be on the forefront with innovative and relevant data on the 

pathogenesis of AEs related to this treatment. This data will be very important because in 

the preliminary studies over 50% of LF of infected individuals that received the triple 

therapy developed AEs (57).  
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Figure 1.1: Historical background of lymphatic filariasis. 
 
[A] Ancient Egyptian relief possibly depicting elephantiasis from 1500 B.C. This image is 
available on the Encyclopedia Britannica website (https://www.britannica.com/place/Punt-
historical-region-Africa). [B] A West African Nok sculpture from 500 B.C. portraying a man 
with a hydrocele. This image is available at  
http://www.invivo.fiocruz.br/cgi/cgilua.exe/sys/start.htm?UserActiveTemplate=english&infoid=
1113&sid=45.  
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Figure 1.2: Life cycle of Wuchereria bancrofti. 
 
This figure is available on the Centers for Disease Control and Prevention website 
(https://www.cdc.gov/parasites/lymphaticfilariasis/biology_w_bancrofti.html). 
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Figure 1.3: Distribution of Wolbachia endosymbionts in adult filarial worms. 
 
 
Longitudinal cross-section of mature [A] and immature [B] adult female filarial worm with 
Wolbachia highlighted as red dots. [C] Longitudinal cross-section of mature adult male filarial 
worm with Wolbachia highlighted as red dots.  
Figure and text adapted from Fischer K, Beatty WL, Jiang D, Weil GJ, and Fischer PU. Tissue 
and stage-specific distribution of Wolbachia in Brugia malayi. PLoS Negl Trop Dis. 
2011;5(5):e1174. 
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Figure 1.4: Images of clinical manifestations of lymphatic filariasis. 
 
[A] Hydrocele in a patient from Cote d’Ivoire. [B] Advanced lymphedema in a patient from Alor 
Island, Indonesia. [C and D] Elephantiasis of the leg. [C] shows a lower leg of a woman in Sri 
Lanka and [D] shows scientists inspecting deep skin folds in a patient from central Java, 
Indonesia. Photos were provided by Peter U. Fischer and Gary J. Weil. 
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Figure 1.5: The progress of GPELF (Global Program to Eliminate Lymphatic Filariasis). 
 
[A] The cumulative number of countries that have started an LF mass drug administration 
control program from the year 2000 to 2014. [B] The cumulative number of anti-LF treatments 
delivered by GPELF from the year 2000 to 2014. Data is from the World Health Organization’s 
(WHO) PCT databank (Lymphatic filariasis), and the values in black represent the data that was 
not included in the previous published analyses (55, 117). Insert in [B] represents the proportion 
of the treatments delivered to each of the WHO regions (AMRO: Region of the Americas, AFRO: 
African Region, EMRO: Eastern Mediterranean Region, WPRO: Western Pacific Region, and 
SEARO: South-East Asia Region).  
Figure and text adapted from Turner HC, Bettis AA, Chu BK, McFarland DA, Hooper PJ, 
Ottesen EA, and Bradley MH. The health and economic benefits of the global program to 
eliminate lymphatic filariasis (2000-2014). Infect Dis Poverty. 2016;5(1):54. 
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Figure 1.6: Wolbachia signaling pathway. 
 
An overview of the proposed mechanisms by which Wolbachia contributes to the pathogenesis 
of lymphatic filarial disease and adverse events after treatment.  
Figure is adapted from Taylor MJ, Cross HF, Ford L, Makunde WH, Prasad GB, and Bilo K. 
Wolbachia bacteria in filarial immunity and disease. Parasite Immunol. 2001;23(7):401-9. 
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Chapter 2: 

Changes in cytokine, filarial antigen, and DNA levels associated 

with adverse events following treatment of lymphatic filariasis 
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Changes in Cytokine, Filarial Antigen, and DNA Levels Associated With Adverse Events 

Following Treatment of Lymphatic Filariasis. J Infect Dis. 2018;217(2):280-7.2.1  
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2.1  Summary.  

Background: Mild to moderate adverse events (AEs) are common after treatment 

of lymphatic filariasis (LF) and pose a major challenge for the global LF elimination 

program. We studied changes in cytokine levels and filarial worm components in plasma 

of subjects with and without AEs following treatment of LF.  

Methods: Participants (N=24) were hospitalized and monitored for AEs following 

treatment. Cytokines (27), filarial DNA, circulating filarial antigen (CFA), and immune 

complexes were measured in plasma samples collected before and after treatment.  

Results: Levels for 16 cytokines increased after treatment in individuals with 

moderate AEs compared to individuals with no and/or mild AEs. These included three 

major pro-inflammatory cytokines (IL-6, TNF-α and IL-1β). Eotaxin-1 levels were 

elevated at baseline in individuals who developed moderate AEs after treatment; thus 

eotaxin-1 is a potential biomarker for AE risk. CFA and filarial DNA levels increased 

more in individuals with moderate AEs after treatment than in people with no/mild AEs.  

Conclusions: Increases in cytokine, filarial DNA and CFA levels were associated 

with development of AEs following treatment of LF. Improved understanding of the 

pathogenesis of AEs may lead to improved methods for their prevention or management 

that could increase compliance in elimination programs. 
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2.2 Introduction. 

Lymphatic filariasis (LF) is a neglected tropical disease that is caused by the nematode 

parasites Wuchereria bancrofti, Brugia malayi and B. timori. Adult worms release first stage 

larvae (microfilariae or Mf) into the blood, and these are ingested by mosquitoes. The 

parasites develop to become infective third stage larvae that can initiate new infections when 

they are transmitted to humans by mosquitoes. The worms and the host’s inflammatory 

responses can lead to severe morbidity with lymphedema, hydrocele, and elephantiasis (1). 

The World Health Organization (WHO) launched the Global Program to Eliminate LF 

(GPELF) in the year 2000 with the goal of eliminating LF as a public health problem by 

2020. The primary tool used by GPELF is annual mass drug administration (MDA), and 

some 500 million people are treated each year (2). The medications used, namely 

albendazole (ALB), ivermectin (IVM) and diethylcarbamazine (DEC), have well-established 

safety profiles, and serious adverse events (AEs) related to treatment are very rare. However, 

mild to moderate AEs such as fever, and headache are common. High MDA compliance is 

important for LF elimination programs (3). The fear of AEs in communities receiving MDA 

reduces compliance (4, 5). Understanding the pathogenesis AEs is even more urgent at this 

time, because recent studies have shown that a single dose of all three LF MDA drugs (IVM, 

DEC and ALB, sometimes called “IDA”) is more effective for clearing Mf than the current 

two-drug MDA regimens ((6) and authors’ unpublished observations). This increased 

efficacy may be associated with increased AE rates in infected individuals. 

The pathogenesis of AEs after treatment of LF is poorly understood. Host immune 

responses and parasite death are believed to be involved, because post-treatment AE rates are 

much higher in infected individuals, and because AE rates are correlated with blood Mf 
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counts (7). AEs are probably related to release of parasite antigens and/or Wolbachia (an 

intracellular alpha proteobacteria found in LF-causing filarial worms). Wolbachia-derived 

molecules may interact directly with the innate immune system through ligands such as Toll-

like receptors (TLRs) to activate immune cells to release cytokines (8-13). Few studies have 

looked at changes in cytokines associated with AEs following LF treatment. One study 

documented increases in IL-6 and TNF-α after treatment in five men with AEs (14). Another 

study reported that AEs were associated with increased levels of IL-6, lipopolysaccharide 

binding protein (LBP), IL-10 and soluble TNF receptor (15). Other studies suggested that 

AEs may be related to circulating immune complexes (CIC) that form when filarial antigens 

are released by dying parasites (16, 17). CIC from plasma of LF-infected individuals have 

been shown to be pro-inflammatory when added to granulocytes (18). A recent clinical trial 

provided us with the opportunity to use 21st century methods to revisit the issue of AE 

pathogenesis. 

 

2.3  Methods. 

  Study design. 

Plasma samples used for this study were obtained during a pharmacokinetic trial 

conducted in Papua New Guinea (PNG) in 2013 (6). Twenty-four W. bancrofti infected 

individuals were randomized to one of two treatment arms: the standard LF MDA 

regimen for PNG (ALB and DEC) or the new IDA triple therapy regimen. The AE 

assessment protocol was described in a previous publication (6). Briefly, objective AEs 

were assessed (vital signs and a brief physical exam) for all study participants at 0, 4, 8, 

12, 24, 48 and 72 hours post-treatment in a hospital setting. Subjective AEs were 
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assessed at the same times by asking the participants open-ended questions about 

symptoms that developed after treatment. All participants were followed as outpatients 

and examined on day 7. Nineteen of 24 participants (79%) developed at least one AE, 

and 7 of these individuals had fevers greater than 38°C. Blood was collected immediately 

before treatment and at 11 time-points after treatment (1hr to 72hrs). Notable in this study 

was the high Mf levels (geometric mean = 1,679, range 133-13,776 Mf/mL). Plasma 

samples were stored and shipped at -80°C. Informed consent was obtained from all 

participants as previously described (6). 

 

  Adverse events classification. 

AEs were scored as none, mild, or moderate. Those with moderate AEs (N=7) had 

at least one new symptom plus objectively measured fever (a temperature of > 38°C) 

within 72 hours after treatment. Individuals with subjective or objective AEs without 

fever were considered to have mild AEs (N=12). Individuals with no objective or 

subjective symptoms were considered to have no AEs (N=5).  

 

  Cytokine assay. 

Twenty-seven cytokines were measured using a MAGPIX system with the Bio-

Plex Human 27-Plex Cytokine Panel and Bio-Plex Cytokine Reagent Kit (Bio-Rad, 

Hercules, CA). Plasma samples were thawed and centrifuged before testing. A 

preliminary study tested samples from all 12 time-points (pre-treatment and 1, 2, 3, 4, 6, 

8, 12, 24, 36, 48 and 72 hours post-treatment) for 7 participants. Since there were no 

changes in cytokine levels during the first 6 hours, only 7 time points (pre-treatment, 8, 
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12, 24, 36, 48 and 72 hours post-treatment) were tested for the remaining 17 study 

participants. All samples were tested in duplicate, and all samples from the same 

individual were run on the same plate.  The cytokine assay panel included IL-1β, IL-1Ra, 

IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, basic 

FGF, eotaxin-1, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF-BB, 

RANTES, TNF-α, and VEGF. Standard curves were calculated using the manufacturer’s 

software, and our analysis considered mean concentrations (pg/mL) from two duplicate 

wells. Mean levels for all 27 cytokines were calculated for each AE group at each time-

point. Kruskal-Wallis H tests were used to compare absolute cytokine levels between the 

three AE groups at each time-point. Wilcoxon signed-rank tests were used to compare 

post-treatment levels to baseline levels within AE groups for each time-point. After 

evaluation of the data three outliers with extremely elevated levels at baseline were 

excluded from the analysis. 

 

  Circulating Filarial Antigen (CFA).  

A direct sandwich enzyme immunoassay (EIA) was performed as previously 

described (19, 20).  Plasma samples were available for 21 of the 24 individuals for this 

test (6 moderate, 10 mild, and 5 no AEs), and samples from 5 time-points were tested 

(pre-treatment, 6, 12, 24 and 48 hours post-treatment). All samples from individual 

participants were tested in duplicate on the same plate. The mean CFA levels were 

calculated for each AE group at each time-point. Kruskal-Wallis H tests were used to 

compare the absolute CFA levels between the three AE groups at each time-point. 
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Wilcoxon signed-rank tests were used to compare post-treatment CFA levels at each 

time-point to baseline levels within the AE groups. 

 

  Detection of filarial DNA by qPCR.  

DNA was extracted from 100µL of plasma using the E.Z.N.A. Tissue DNA Kit 

(Omega Bio-tek, Norcross, GA) using the manufacturer’s protocol. The qPCR assay was 

a TaqMan probe-based assay, and the target was the “long DNA repeat” of W. bancrofti 

(LDR; GenBank accession no. AY297458). We used previously published primers and 

probes (21) purchased from Integrated DNA Technologies (Coralville, IA). Real-time 

PCR reactions were performed with 10µL of TaqMan master mix (Applied Biosystems, 

Foster City, CA) plus 450 nmol/L of primers, 125 nmol/L probe, and 2µL DNA with a 

final volume of 20µL. Thermal cycling was performed with a QuantStudio 7-Plex Real-

Time PCR System (Applied Biosystems). PCR reactions were carried out for 40 cycles, 

and cycle threshold (Ct) values were determined using the manufacturer’s software. 

Plasma samples were available for 21 of the 24 individuals for this assay (7 moderate, 9 

mild, and 5 no AEs), and 7 time-points were selected (pre-treatment, 8, 12, 24, 36, 48 and 

72 hours post-treatment). Samples were run in duplicate, and all samples from individual 

participants were tested on the same plate. Each plate contained a positive control (DNA 

extracted from W. bancrofti Mf), and two negative controls (DNA extracted from plasma 

samples from healthy North American control subjects and deionized water). Delta Ct 

values (baseline Ct value minus post-treatment Ct value) were calculated at each time-

point for each individual, and one-way ANOVA analysis was used to compare the delta 

Ct values between the three AE groups at each time-point. 
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  Immune complex assay. 

In this assay CIC were incubated with human C1q (part of the first component in 

the classical complement pathway) that was immobilized on microtiter plates. C1q was 

purchased from Sigma-Aldrich, St. Louis, MO. Nunc Immulon 2HB flat-bottom 96-well 

plates (Thermo Scientific, Waltham, MA) were coated with 50µL of 0.01mg/mL C1q in 

1x PBS pH7.4 and incubated at 4°C overnight. Plates were washed and blocked for 1 

hour at room temperature (RT). After washing, 50µL sample plasma or standard (diluted 

1:60 in PBS with 0.5% casein, 0.5% Tween-20) was added to each well, and the plates 

were incubated at RT for 1 hour. Aggregated human gamma globulin (AHG) was used as 

the positive control and standard. Alkaline phosphatase-conjugated goat anti-human IgG 

was used at a dilution of 1:1000, and plates were incubated for 1 hour at 37°C. The plates 

were developed with alkaline phosphatase substrate (pNPP disodium salt hexahydrate) 

and read at 405nm. Plasma was available from 20 of the 24 individuals for this assay (7 

moderate, 10 mild, and 5 no AEs), and 7 time-points were selected (pre-treatment, 8, 12, 

24, 36, 48 and 72 hours post-treatment). Samples were run in duplicate and all samples 

from individual participants were run on the same plate. Each plate contained two 

negative controls (plasma samples from healthy North American control subjects and 

deionized water). Values were expressed as ng/mL of AHG, and mean CIC values were 

calculated for each AE group at each time-point. Kruskal-Wallis H tests were used to 

compare absolute CIC levels between the three AE groups at each time-point. Wilcoxon 

signed-rank tests were used to compare post-treatment CIC levels at each time-point to 

baseline levels within each AE group. 
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2.4  Results. 

  Cytokine levels. 

Three of the 24 individuals (all in the mild AE group) had extremely elevated 

cytokine levels at baseline, and they were excluded from the analysis. These three 

individuals had outlier levels for 9, 12 and 14 of the 27 measured cytokines respectively, 

at baseline. These high baseline cytokine levels were unrelated to treatment and their 

inclusion would have distorted the data, because the aim of the study was to investigate 

the change in cytokines post-treatment.  

Changes in cytokine levels after treatment were significantly different in persons 

with moderate AEs compared to those in persons with no and/or mild AEs for 22 of the 

27 cytokines tested (Table 2.1) (Kruskal-Wallis analysis followed by post-hoc tests to 

determine which AE groups were significantly different).  Most of these cytokines (IL-

1β, IL-1Ra, IL-4, IL-6, IL-7, IL-10, IL-12, IL-17, G-CSF, IP-10, MCP-1, MIP-1α, 

PDGF-BB, MIP-1β, TNF-α, and VEGF) increased significantly more in the moderate AE 

group after treatment compared to the no and/or mild AE groups. IL-6, IL-10, MCP-1 

and MIP-1β had the most dramatic post-treatment increases in the moderate AE group 

(Figure 2.1). Several cytokines (IL-8, IL-13 and eotaxin-1) were significantly higher at 

baseline in persons who developed moderate AEs. Eotaxin-1 was greatly increased pre-

treatment in 6 out of the 7 individuals who later developed moderate AEs (Figure 2.2). 

Baseline eotaxin-1 levels were not correlated with baseline Mf counts. The finding that 

some cytokines were higher at baseline in individuals who would go on to develop AEs 

was surprising, and we decided to redo the analysis including the three excluded 

individuals. There was still a significant difference in baseline eotaxin-1 and IL-8 levels 



www.manaraa.com

	 51	

between individuals with moderate AEs compared to individuals with no and/or mild 

AEs. However the difference in IL-13 at baseline disappeared when the outliers were 

included. 

Values for several cytokines were lower at baseline (RANTES) or decreased 

significantly post-treatment (IL-2 and IL-15) in people who developed moderate AEs 

compared to people with no and/or mild AEs. Five cytokines (IL-5, IL-9, FGF-basic, 

GM-CSF and IFN- γ) did not differ by AE group at any time-point, however IL-5 did 

increase post-treatment as previously described (22, 23). We did not correct for multiple 

comparisons, so additional data would be needed to confirm our findings. However, the 

differences in cytokine levels were dramatic between the AE groups, and they persisted 

over time making the results more credible. Based on the standard significance level of 

0.05, approximately 3 differences would be expected to be significant by chance for 54 

tests (27 cytokines measured at 2 time-points). We found 28 significant differences in 

cytokines levels at 12 and 24 hours post-treatment.  

 

  CFA levels and Mf counts. 

CFA is known to circulate in the blood of LF-infected individuals, and this 

antigen is used as a diagnostic marker. The detection limit of the CFA EIA assay is 

6.3ng/mL. CFA was detected in all samples from all study subjects. Baseline CFA levels 

were positively correlated with baseline Mf counts (Spearman’s rho: 0.66, P = 0.001), 

and absolute CFA levels were significantly higher at baseline in the individuals who later 

developed moderate AEs. CFA levels were significantly higher in the moderate AE group 

compared to the no/mild AE groups at all time-points (Figure 2.3). CFA levels increased 
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in all groups after treatment, but the difference was only significant at the 48hr time-point 

(P = 0.048 by Wilcoxon signed-rank test) compared to the baseline level in the moderate 

AE group. There was no difference in absolute CFA levels between the two treatment 

arms at any time-point.  

Baseline Mf counts were higher in individuals who developed moderate AEs 

(geometric mean 4491 Mf/mL compared to 1111 Mf/mL in the mild AE group and 1351 

Mf/mL in the no AEs group), and this difference was significant (P = 0.017 by the 

Kruskal-Wallis test).  

 

  Filarial DNA levels. 

Thirty-three percent of participants had detectable filarial DNA in plasma 

collected before treatment. There was no correlation between pre-treatment Ct values and 

baseline Mf counts (Spearman’s rho: -0.1). Filarial DNA was detected in plasma of all 

subjects at 8 hours post-treatment. Also, filarial DNA levels increased (Ct values 

decreased) after treatment in persons with filarial DNA detected at baseline. DNA levels 

quickly increased for the first 12-24 hours after treatment, after which they start to 

decrease. However, filarial DNA was still detectable in plasma in 95% of individuals 

72hr post-treatment. There was a statistically significant difference in delta Ct values 

between the three AE groups at 12 and 24 hours post-treatment, and this difference was 

due to significantly higher delta Ct values (larger increase in DNA levels) in the moderate 

AE group compared to the mild AE group (Figure 2.4). A similar trend was observed 

between the moderate and no AE groups, but the difference was not statistically 

significant due to the small number of individuals in the no AE group (N=5). There were 
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no significant differences in filarial DNA levels in plasma by treatment arm at any time-

point.  

 

  CIC levels. 

CIC were detected in all samples, and the range at baseline was 108-1312 ng 

AHG equivalent/mL (median 417 ng). Baseline CIC levels were positively correlated 

with Mf counts (Spearman’s rho: 0.68, P = 0.006). There was no difference in absolute 

CIC levels between the AE groups at any time-point (Supplemental Table 2.1). CIC 

levels were relatively stable after treatment, and there were no consistent patterns as 

differences included both increases and decreases.  

 

2.5   Discussion. 

The aim of this study was to determine the role of host cytokines, and filarial 

components released by parasites after treatment, in the development of AEs in LF-

infected individuals. This is the most detailed study to date of cytokine responses that 

occur in persons with AEs after treatment of LF. We identified 22 cytokines that were 

differentially regulated post-treatment between the three AE groups. The majority of 

these cytokines increased more post-treatment in persons who developed moderate AEs. 

Our data are consistent with previously published results such as increases in IL-6, TNF-

α and IL-10 post-treatment in people with AEs (14, 15). However, we also found that 

many other cytokines increased in participants with moderate AEs.  

Plasma levels of filarial DNA and CFA both increased after treatment, and post-

treatment increases in CFA were much more dramatic in people who developed moderate 
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AEs than in those with no/mild AEs. Treatment with ALB/DEC and IVM/DEC/ALB 

resulted in similar changes in CFA and filarial DNA levels after treatment, suggesting 

that the two treatments have similar activity against Mf and adult filarial worms in the 

first days after treatment. CFA levels increased slightly later after treatment than filarial 

DNA, but the CFA increases persisted for a longer time. This result is consistent with 

prior reports of increased CFA levels 5-7 days post-treatment (24, 25). Taken together, 

our results suggest that cytokines, filarial DNA, and CFA all may be involved in the 

pathogenesis of AEs. It is likely that the cytokine responses are triggered by molecules 

that are released from dying parasites. However, it is unclear whether cytokine release is 

triggered by phagocytosis of parasite debris or by direct interaction of parasite molecules 

with ligands on the surface of host cells. Compared to filarial DNA and CFA levels, CIC 

levels were stable after treatment, and there was no difference in CIC levels between the 

AE groups at any time-point. These results suggest that CIC may not be involved in the 

pathogenesis of moderate AEs.  

Cytokine changes have been extensively studied in patients with septicemia or 

after exposure to endotoxin with sequential increases in TNF-α, IL-1β, IL-6, IL-1Ra and 

IL-10 (26). The cytokine pattern in this study was somewhat similar in that TNF-α was 

the first to increase with a peak at 8hr post-treatment. IL-6 had the largest increase (a 13-

fold increase in the moderate AE group) with a peak at 12hr. IL-10, which increases later 

after endotoxin exposure was not delayed in this study; it rose by 8hr and peaked at 12hr. 

Increases in pro-inflammatory cytokines may be stimulated by release of Wolbachia from 

dying filarial worms, but additional studies will have to be conducted to test this 

hypothesis. Dramatic increases in MCP-1 (monocyte chemoattractant protein 1) and 
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MIP-1β/1α (macrophage inflammatory protein 1β/1α) in persons with moderate AEs 

suggest that monocytes and/or macrophages are involved in the pathogenesis of AEs. 

Both of these cytokines are released by macrophages after endotoxin exposure (27), so 

this finding is consistent with the Wolbachia release hypothesis. Although Wolbachia do 

not contain lipopolysaccharide, they do contain endotoxin-like lipoproteins that interact 

with cellular ligands TLR2 and TLR6 (9, 11, 13). 

Several baseline characteristics are known to be correlated with development of 

AEs after treatment of LF. For example, high Mf counts are a known risk factor (7), and 

our study confirmed that this is the case. High CFA levels have not been previously 

identified as a risk factor for AEs. Perhaps because antigen levels were not measured. 

However, the association is not surprising, because CFA levels are positively correlated 

with Mf counts. The finding that participants with elevated levels of certain cytokines 

prior to treatment were at increased risk for moderate AEs was not anticipated. This was 

especially true for eotaxin-1, a chemokine secreted by various cells that attracts 

circulating eosinophils to their respective tissue (28). One potential explanation for this 

finding is that individuals with high levels of eotaxin-1 may have activated eosinophils 

that are poised for attack. These cells rapidly kill parasites that have been damaged by 

anthelmintic drugs and this may trigger a more vigorous pro-inflammatory response that 

results in AEs. This hypothesis is supported by the finding that eotaxin-1 deficient mice 

have reduced eosinophil responses to TLR2 activation and filarial antigen exposure, and 

the finding that macrophages from these mice produce less IL-6 (29). Additional research 

will be needed to understand the apparent link between eotaxin-1 and AEs.  
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Samples from the PNG trial were ideal for our study because of the high rate of 

AEs, the detailed clinical information available for participants, and the availability of 

plasma at many time-points after treatment. One limitation is that we were unable to 

assess Wolbachia in the plasma samples for technical reasons. Another limitation is that 

the correlations we observed do not prove causation.  

In conclusion, this study has provided additional information on changes in 

plasma cytokine levels and in filarial worm components that are associated with moderate 

AEs after LF treatment. We have also shown that high Mf counts and high levels of CFA 

and eotaxin-1 at baseline are associated with increased risk for moderate AEs. Taken 

together, our results suggest that components released from filarial worms interact with 

the host immune system to release pro-inflammatory cytokines that lead to moderate AEs 

with fever and associated symptoms. More work is needed to identify the specific filarial 

worm components that are responsible for this immune activation, but Wolbachia 

endobacteria represent an attractive candidate. However, they are unlikely to be the only 

contributor, because similar AEs occur in patients after treatment of loiasis, and Loa loa 

does not contain Wolbachia (30). Improved understanding of the pathogenesis of AEs 

may lead to strategies to prevent or manage AEs in ways that increase compliance with 

MDA, which is essential for the success of LF elimination programs.  
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Figure 2.1: Cytokine levels pre- and post-treatment in individuals with no, mild and moderate 
adverse events (AEs). 
 
Mean cytokine levels (± SE) in the three AE groups over time. IL-6 [A], IL-10 [B], MCP-1 [C] 
and MIP-1β [D] increased post-treatment in the moderate AE group while there were no 
significant changes in the no or mild AE groups. Significance (Kruskal-Wallis H Test): * 
represents P < 0.05, ** represents P < 0.01. 
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Figure 2.2: Eotaxin-1 levels pre- and post-treatment in individuals with no, mild and moderate 
adverse events (AEs). 
 
Mean eotaxin-1 levels (± SE) for all three adverse event (AE) groups over time. Eotaxin-1 levels 
were significantly higher at all time-points in the moderate AE group compared to the no and/or 
mild AE groups. Significance (Kruskal-Wallis H Test): * represents P < 0.05, ** represents P < 
0.01. 
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Figure 2.3: Circulating filarial antigen (CFA) levels pre- and post-treatment in individuals with 
no, mild and moderate adverse events (AEs). 
 
Mean Wb (W. bancrofti) CFA levels (± SE) for each AE group over time. CFA levels were 
significantly higher in the moderate AE group than in the no and mild AE groups. Significance 
(Kruskal-Wallis H Test): * represents P < 0.05, ++ represents P < 0.01. CFA levels were 
significantly higher at 48 hours post-treatment compared to baseline in the moderate AE group 
(P-value= 0.048 by Wilcoxon signed-rank test). 
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Figure 2.4: Filarial DNA levels pre- and post-treatment in individuals with no, mild and 
moderate adverse events (AEs). 
 
Filarial DNA levels in plasma (expressed as delta Ct ± SE) after treatment by adverse event (AE) 
group. Ct values decreased after treatment in all three AE groups, signifying an increase in 
filarial DNA levels in plasma. Mean delta Ct values were significantly greater in the moderate 
AE group when compared to the mild AE group at 12 (P = 0.025) and 24 (P = 0.020) hours post-
treatment (by ANOVA).  
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Table 2.1: Changes in cytokines at different times after treatment in persons who developed 
moderate adverse events (AEs) after treatment of filariasis compared to those with no or mild 
AEs. 
 
HourA  IL-1β IL-1RA IL-2 IL-4 IL-6 IL-7 IL-8 IL-10 IL-12 IL-13 IL-15 
0       +   +  
8 ++ ++  + ++  ++ + + ++ - 
12 ++ ++  + ++  + +  +  
24  + - + +  +   +  
36 + +   ++  ++   + - 
48      +     - 
72            
HourA IL-

17A 
Eotaxin G-

CSF 
IP-
10 

MCP-1 MIP
-1α 

PDGF
-bb 

MIP-
1β 

RANTES TNF-α VEGF 

0  ++       - -   
8 + ++ + + ++ ++  ++ - ++  
12  ++ ++ ++ ++ ++ + ++ -  + 
24  ++  ++ +   + - +  
36  + + ++ +   +  +  
48  ++  ++    +    
72  +  +        
AHours post-treatment. 
 
These differences were due to significant increases (represented with plus signs) in cytokine 
levels in the moderate AE group compared to the no and/or mild AE groups (Kruskal-Wallis 
analysis followed by post-hoc tests to determine which AE groups were statistically different). 
IL-2, IL-15 and RANTES were exceptions as these cytokines were decreased (represented with 
minus signs) before and/or after treatment in the moderate AE group. Significance (by the 
Kruskal-Wallis H Test): + or - corresponds to P  < 0.05; ++ or - - corresponds to P < 0.01. 
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Supplemental Table 2.1: Levels of circulating immune complexes (CIC) in plasma at different 
times after treatment in the three adverse events (AEs) groups. 
 
Hours Post-
Treatment 

0 8 12 24 36 48 72 

Moderate AEs  
(N=7) 

514 
(144) 

512 
(168) 

539 
(146) 

510 
(158) 

514 (95) 587 
(207) 

534 (162) 

Mild AEs 
(N=10) 

373 
(96) 

384 (96) 378 (90) 391 (90) 386 
(102) 

361 
(207) 

396 (110) 

No AEs  
(N=5) 

611 
(175) 

615 
(129) 

635 
(154) 

699 
(139) 

702 
(143) 

698 
(154) 

648 (151) 

 
Mean CIC plasma concentration, ng aggregated human immunoglobulin equivalent/mL (+ SE).  
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3.1  Summary. 

Background: Lymphatic filariasis (LF) is a neglected tropical disease, and the 

Global Program to Eliminate LF delivers mass drug administration (MDA) to 500 million 

people every year. Adverse events (AEs) are common after LF treatment.  

Methodology/Principal Findings: To better understand the pathogenesis of AEs, 

we studied LF-patients from a treatment trial. Plasma levels of many filarial antigens 

increased post-treatment in individuals with AEs, and this is consistent with parasite 

death. Circulating immune complexes were not elevated in these participants, and the 

classical complement cascade was not activated. Multiple cytokines increased after 

treatment in persons with AEs. A transcriptomic analysis was performed for nine 

individuals with moderate systemic AEs and nine matched controls. Differential gene 

expression analysis identified a significant transcriptional signature associated with post-

treatment AEs; 744 genes were upregulated. The transcriptional signature was enriched 

for TLR and NF-κB signaling. Increased expression of seven out of the top eight genes 

upregulated in persons with AEs were validated by qRT-PCR, including TLR2.  

Conclusions/Significance: This is the first global study of changes in gene 

expression associated with AEs after treatment of lymphatic filariasis. Changes in 

cytokines were consistent with prior studies and with the RNAseq data. These results 

suggest that Wolbachia lipoprotein is involved in AE development, because it activates 

TLR2-TLR6 and downstream NF-κB. Additionally, LPS Binding Protein (LBP, which 

shuttles lipoproteins to TLR2) increased post-treatment in individuals with AEs. 

Improved understanding of the pathogenesis of AEs may lead to improved management, 

increased MDA compliance, and accelerated LF elimination. 
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3.2  Introduction. 

Lymphatic filariasis (LF) is a disabling neglected tropical disease that is caused 

by the mosquito-borne filarial parasites Wuchereria bancrofti, Brugia malayi and B. 

timori. Adult worms live in the human host’s lymphatic system and release larval 

parasites (microfilariae or Mf) that circulate in the blood. Infection and host 

inflammatory responses to the parasite can lead to severe morbidity including 

lymphedema, hydrocele and elephantiasis (1). To combat this disease the WHO launched 

the Global Program to Eliminate Lymphatic Filariasis (GPELF) in the year 2000 with the 

goal of eliminating LF as a public health problem by 2020. The program uses mass drug 

administration (MDA), to cure infections, prevent disease, and reduce transmission of 

new infections. As of 2016 a total of 6.7 billion treatments had been delivered to more 

than 850 million individuals (2), making GPELF the largest public health intervention for 

an infectious disease to date based on MDA. Drugs used for LF MDA include 

albendazole (ALB), ivermectin (IVM) and diethylcarbamazine (DEC). MDA with two-

drug combinations is usually provided annually for 4-6 years. The combinations used are 

ALB with IVM in sub-Saharan Africa and ALB with DEC in other regions (1). New 

studies have shown that combining all three drugs increases the anti-filarial effect and 

potentially decreases the number of required treatment rounds (3-7). This new triple 

therapy (IDA) was recently recommended by the WHO as the preferred regimen for LF 

elimination in some settings (8).  

Although LF treatment is safe, transient mild to moderate systemic adverse events 

(AEs) are common following treatment, and these are especially common in individuals 

with circulating Mf (3). Furthermore, the risk of AEs and AE severity are positively 
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correlated with blood Mf counts (Mf/mL) (9). Systemic AEs are not direct effects of the 

drugs on the host, because they are quite uncommon in uninfected individuals (10). The 

pathogenesis of these AEs is not completely understood, but they are believed to be 

trigged by host responses to dying filarial worms. Post-treatment AEs have been 

associated with increases in plasma levels of IL-6, TNF-α and soluble TNF receptor (11, 

12). We recently reported significant increases in 16 cytokines in persons who 

experienced AEs after treatment during a clinical trial that was performed in Papua New 

Guinea (13). These results were consistent with LPS-like stimulation of cytokines with 

increases in TNF-α, IL-1β, IL-6, IL-1RA and IL-10.  

Wolbachia are intracellular α-proteobacteria that are present in filarial species that 

cause LF. The bacteria are hypothesized to trigger AEs when they are released by dying 

parasites after treatment. One study detected free Wolbachia DNA in blood collected 4-

48 hours after LF treatment in individuals with moderate and severe AEs, but bacterial 

DNA was not detected in blood from most individuals with no or mild AEs (14). Some 

features of AEs are consistent with the effects of LPS. A filarial (Brugia malayi) antigen 

with LPS-like characteristics was described some years ago (15). However, the B. 

malayi-associated Wolbachia genome (16) does not include orthologues of genes 

responsible for the biosynthesis of lipid A (a component of LPS) (17). It is therefore 

unlikely that B. malayi Wolbachia contains LPS in its cell wall. Bioinformatic analysis of 

the Wolbachia genome predicts the presence of a Wolbachia lipoprotein: peptidoglycan-

associated lipoprotein (PAL) (18). A synthetic, lipolated version of the N-terminus of 

Wolbachia PAL can signal through TLR2-TLR6 and induce pro-inflammatory responses 

in vitro in murine and human cells and in vivo in mice (18). Additionally, the diacylated 
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N-terminal polypeptide of the Wolbachia PAL (WoLP) was identified as the main trigger 

for a neutrophil inflammatory response through a TLR2-TLR6 dependent mechanism in 

vivo in human samples from individuals infected with Onchocerca volvulus (19). 

Recently PAL was confirmed by proteomics as one of the most abundant proteins in 

extracts from adult B. malayi female worms(20). 

Besides Wolbachia, post-treatment AEs could also be triggered by immune 

complexes (IC) that develop after treatment of LF. ICs are aggregated antigens, 

antibodies, and components of the complement cascade that can activate pro-

inflammatory pathways (21). It has been reported that filarial antigen levels increase with 

a concurrent decrease in filarial specific antibodies post-treatment, and these changes 

were temporally associated with the development of AEs, suggesting that AEs might be 

caused by IC (22). Circulating IC (CIC) have also been shown to increase post-treatment 

(23), and CIC precipitated from LF-infected individuals can activate granulocytes to 

release pro-inflammatory cytokines (24). CIC activate the classical complement pathway.  

AEs are common after treatment for LF, and fear of AEs reduces population 

compliance with MDA (25). Therefore, the goal of this study was to improve 

understanding of the pathogenesis of AEs after LF treatment. We hypothesized that AEs 

are caused when filarial worm components are released after treatment and interact with 

the host innate or adaptive immune systems and that this would be associated with 

specific biomarker and gene expression profiles. To test this hypothesis we measured 

filarial antigen, CIC, LPS Binding Protein (LBP) and components of the complement 

cascade in plasma before and after treatment, and we studied host transcriptional 
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responses and cytokine profiles in LF-infected individuals who experienced AEs after 

treatment.  

 

3.3  Methods. 

Study design and sample collection. 

Buffy coat and plasma samples were collected during an open label filiariasis 

treatment study in the Agboville District in southeastern Côte d’Ivoire (Clinicaltrials.gov 

NCT # 02974049). Written informed consent was obtained from all participants. Adults 

with W. bancrofti microfilaremia were randomly assigned to one of four treatment arms 

(all oral medications): the standard LF treatment regimen for Côte d’Ivoire (200µg/kg 

IVM plus 400mg ALB), IDA: 200µg/kg IVM plus 6mg/kg DEC and 400mg ALB, a 

single 400 mg dose of ALB, or a single 800 mg dose of ALB. A subset of ninety-five 

individuals treated with either IVM/ALB, IDA or 400mg ALB had samples processed for 

use in the AE study described in this paper. We selected these individuals based on the 

availability of pre- and post-treatment samples and clinical AE data. Metadata of these 95 

individuals is shown in Supplemental Table 1. 

A physical examination was performed shortly before treatment, and vital signs 

were recorded. A review of systems (ROS) questionnaire was also completed to assess 

subjective symptoms prior to treatment. Venous blood (3 to 4 mL in EDTA) was 

collected immediately before participants received treatment. Participants were 

interviewed and examined the next day to assess AEs, and venous blood was collected 

approximately 24 hours after treatment. Blood samples were centrifuged within an hour 

of collection, and plasma was removed. The buffy coat (approximately 500µL) was 
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carefully aspirated with a pipette and added to 1.8mL of RNAlater (Ambion, Foster City, 

CA). The plasma samples and buffy coat/RNAlater samples were stored at the study site 

at -20°C, shipped frozen, and later stored at -80°C.   

 

Adverse event classification.  

AEs were categorized as mild, or moderate. Those with moderate AEs (n=9) had 

at least two new or worsening subjective symptoms plus one objectively measured 

change in their vital signs (an increase in axillary temperature of ≥ 0.8°C to at least 

37.4°C post-treatment and/or a decrease in sitting systolic blood pressure of at least 20 

mm Hg). Individuals with subjective or objective AEs that did not fulfill the criteria for 

moderate AEs were considered to have had mild AEs (n=24). Individuals with no new 

objective or subjective symptoms after treatment were considered to have no AEs (n=62). 

 

Circulating filarial antigen assay.  

A direct sandwich enzyme immunoassay (EIA) was performed as previously 

described (13). This assay uses the monoclonal antibody AD12 that binds to a 

carbohydrate epitope on circulating filarial antigen (CFA). It is important to note that the 

carbohydrate epitope recognized by AD12 is present in many filarial glycoproteins (26). 

However, the high molecular weight CFA is the only filarial antigen that is frequently 

detected in the blood of W. bancrofti-infected individuals. Pre- and post-treatment plasma 

samples from 95 individuals were tested in duplicate. The detection range of the CFA 

EIA was 6.3 to 400 ng/mL. CFA was detected in all samples, but two individuals had 

extremely high CFA levels that were above the upper detection limit of the assay. These 
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samples were retested after dilution to obtain baseline CFA concentrations. The percent 

change in CFA relative to baseline following treatment was calculated for each 

participant. Sample pairs with pre-treatment values less than 20 ng/mL (7 individuals) 

were excluded from the percent calculations, because they were near the lower detection 

limit of the assay. Kruskal-Wallis H tests were used to compare percent change values 

and absolute values between the three AE groups and the three treatment arms. Wilcoxon 

signed-rank tests were used to compare pre- and post-treatment CFA levels within the 

three AE groups. 

 

Immunoprecipitation and Western blot. 

Nine paired (pre- and post-treatment) samples with high CFA levels at baseline 

were selected for this analysis; six of these participants had moderate AEs, one had mild 

AEs, and two had no AEs. 15mg of a monoclonal antibody (DH6.5) that detects the same 

carbohydrate epitope as AD12 was directly conjugated to 2mL of agarose Affigel 10 

beads (Bio-Rad, Hercules, CA) according to the manufacturer’s protocol. Conjugated 

beads were stored as a 50% solution in PBS. 40µL of conjugated beads were mixed with 

50µl of human plasma and 300µl PBS and rocked overnight at 4¹C.  The beads were 

washed four times with cold PBS and then boiled in 1X NuPAGE LDS sample buffer 

(Invitrogen, Carlsbad, CA) to release bound antigens. Proteins were resolved by SDS-

PAGE using a 4-12% bis-tris NuPAGE gradient gel (Invitrogen) and transferred to 

0.45µM nitrocellulose membrane (Amersham, Piscataway, NJ). Membranes were 

blocked with 5% milk in phosphate buffered saline with tween-20 (PBS-T) followed by 

incubation with a peroxidase-conjugated AD12 antibody (1:3000 dilution) for one hour at 
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room temperature. After washing, membranes were incubated with Clarity Western ECL 

substrate (Bio-Rad). Chemiluminescence was detected by a ChemiDoc imager (Bio-Rad), 

and results were analyzed using Image Lab 5.2.1 software.  

 

Immune complex assay.  

CIC were measured with a C1q ELISA. C1q was purchased (Sigma-Aldrich, St. 

Louis, MO), and a previously published protocol was followed (13). Plasma samples 

were available from 41 individuals for this assay (8 with moderate AEs, and 33 with no 

AEs), and both pre- and post-treatment samples were tested in duplicate. Negative control 

samples (plasma samples from healthy North American subjects and deionized water) 

were tested on each plate. Values were expressed as µg/mL of AHG (aggregated human 

gamma globulin) (Invitrogen). The range of detection for the CIC ELISA was 0.0006 to 6 

µg/mL of AHG, and all samples had detectable CIC. Mann-Whitney U tests were used to 

compare absolute CIC levels between the two AE groups pre- and post-treatment. The 

Wilcoxon signed-rank test was used to compare post-treatment CIC levels to baseline 

levels within AE groups. The Kruskal-Wallis H test was used to compare absolute CIC 

levels between the three treatment arms post-treatment. 

 

Complement component assays. 

Nine individuals with moderate AEs were matched to individuals with no AEs 

following treatment. Matching was based on age, sex, baseline Mf count, and treatment 

arm (Supplemental Table 2). Complement component 3 (C3), complement component 4 

(C4) and Factor B (FB) were measured in the 36 samples (18 matched case-control 
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subjects pre- and post-treatment) with ELISA kits (AssayPro, St. Charles, MO). The C3 

and C4 assays were competitive enzyme immunoassays, and the FB assay was a 

sandwich ELISA. Each sample was tested in duplicate and manufacturer’s protocol was 

followed. Paired t-tests were used to compare pre- and post-treatment complement 

component levels by AE group. 

 

LPS binding protein assay. 

LBP was measured with a sandwich ELISA kit (Abnova, Taipei, Taiwan). Plasma 

samples from the same 18 matched case-control subjects were included. Each sample was 

tested in duplicate and manufacturer’s protocol was followed. Paired t-tests were used to 

compare pre- and post-treatment levels within both AE groups. The range of detection for 

the LBP ELISA was 5 to 50 ng/mL. 

 

Cytokine assays. 

Twenty-seven cytokines (IL-1β, IL-1RA, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, 

IL-10, IL-12 (p70), IL-13, IL-15, IL-17, basic FGF, eotaxin-1, G-CSF, GM-CSF, IFN-γ, 

IP-10, MCP-1, MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-α, and VEGF) were 

measured with the MAGPIX system with the Bio-Plex Human 27-Plex Cytokine Panel 

and Bio-Plex Cytokine Reagent Kit (Bio-Rad). Plasma samples from the same 18 

matched-control subjects were included. A previous paper includes the detailed protocol 

(13). Briefly, all samples were tested in duplicate, standard curves were calculated using 

the manufacturer’s software, and the analysis considered mean concentrations (pg/mL) 

from two duplicate wells. Wilcoxon signed-rank tests were used to determine whether 
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cytokine levels changed after treatment in either of the two AE groups. Mann-Whitney U 

tests were used to determine whether pre- or post-treatment cytokine levels were different 

between the two AE groups. For graphing, fold changes were calculated for each 

cytokine by AE groups, and samples with cytokines below the detection limit were 

assigned a value equal to half the value of the lowest pre-treatment sample concentration 

measured for that cytokine. 

 

RNA preparation. 

RNA was extracted from pre- and post-treatment buffy coat samples from the 

same 18 matched case-control subjects. Total RNA was extracted using Qiagen RNeasy 

kits (Qiagen, Hilden, Germany) according to the manufacturer’s protocol with an added 

homogenization step and on-column DNase digestion as follows. For each sample 200µL 

of the buffy coat/RNAlater mixture was added to 700µL of the kit’s RLT buffer and 

vortexed. The mixture was then added to a QIAShredder column (Qiagen) and 

centrifuged for 2 min at 16,000g. The flow-through was added to 700µL of 70% ethanol, 

and this mixture was added to a RNeasy column. Bound RNA was eluted in 30µL 

RNase-free water and stored at -80°C. The quality and quantity of RNA was verified with 

a Bioanalyzer 2100 (Agilent Technologies, Cedar Creek, Texas). Samples were 

processed with the TruSeq Stranded Total RNA LT Sample Prep Kit with Ribo-Depletion 

using the manufacturer’s protocol (Illumina, San Diego, CA). The RNA was high quality 

(average RIN value 9.3, range 8.5-10).  
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RNA sequencing and mapping. 

The 36 samples were sequenced in two batches. The first 14 samples were 

sequenced with the HiSeq2000 (2x 100 PE run and Illumina TruSeq Stranded Total 

RNA) platform, and the remaining 22 samples were sequenced with HiSeq4000 (2x 150 

PE run and Illumina TruSeq Stranded Total RNA). Between 28-41 million read 

fragments per sample were mapped to 19,864 protein-coding genes. Raw reads were 

mapped to protein coding genes using HISAT2 (version 2.0.5) (27), and the human 

reference genome GRCh38.84. FeatureCounts (28) was used to count reads per gene.  

 

Differential gene expression and overall expression patters.  

DESeq2 (29) was used to generate normalized read counts and to identify 

differentially expressed genes between the different comparator groups (namely AEs vs. 

no AEs and pre- vs. post-treatment). The program “R” with the biocLite package 

“DESeq2” was used. Gene expression results from individuals before and after treatment 

were considered to be repeated measures for the analysis. Principal component analysis 

(PCA) was performed for 500 genes with the greatest variability in expression (based on 

DESeq2 output, default settings), and distance metrics statistics (30) were used to 

determine whether groupings affected overall expression patterns. A clustering 

dendrogram (Euclidean distance, complete linkage) was also used to illustrate overall 

expression patterns, and this method considered all genes. A two-tailed binomial 

distribution with unequal variance (for categorical data), and Mann-Whitney U tests (for 

continuous variables) were used to identify over-represented metadata variables in the 

different clustering groups such as baseline Mf/mL and treatment group.  
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Functional enrichment in the post-treatment AE group. 

The online tool WebGestalt (31) was used to identify enriched KEGG pathways 

within genes that were upregulated post-treatment during AEs. The reference set was a 

list of all 19,864 genes with expression signals in the RNAseq data, and the default 

values were used except the significance level (FDR < 0.05). The program i-cisTarget 

(32) was used to identify enriched transcription factor binding sites in the upregulated 

gene set using default settings  and database version 4.0.  

 

Identification of similar expression profiles. 

 GeneQuery is an online tool that can search the PubMed GEO database and 

compare transcriptional signatures to published gene expression profiles (33). The input 

for the post-treatment AE profile were 744 genes that were identified by differential gene 

expression (DESeq2) to be upregulated post-treatment in individuals with moderate AEs.  

 

Changes in peripheral blood leukocyte populations after treatment 

CIBERSORT(34) is an analytical tool that can estimate the abundances of 22 

leucocyte subtypes based on RNA-seq data. Pre- and post-treatment DESeq2 normalized 

read counts were used as input for the program. The standard LM22 (22 immune cell 

types) was the signature gene file, and all default settings were used. Thirteen cell 

subtypes had very low representation in this dataset (totaling less than 4% in all 36 

samples), so the analysis was limited to the remaining subtypes. Percent change for each 
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cell type post-treatment was calculated for the two AE groups, and Mann-Whitney U 

tests were used to assess the significance of differences by AE group. 

 

Prioritization of the genes with altered regulation post-treatment in individuals with 

AEs. 

Random forest (RF) analysis was used to prioritize the 678 genes that were 

differentially expressed in individuals with moderate post-treatment AEs.  RF was 

performed using the “R” package “randomForest” with 1000 trees and default values to 

analyse DESeq2 normalized read counts. Differentially expressed genes were ranked 

based on decreasing Mean Decrease in Accuracy values for 10 separate RF models. The 

Mean Decrease in Accuracy is the decrease in model accuracy from permuting the values 

in each feature. This metric is used to compare the impact of the variables in the model, 

and a large positive value indicates that a variable was closely linked to AE group across 

the dataset.  

 

Preparation of cDNA for validation of selected differentially expressed genes. 

Additional RNA was extracted from residual buffy coat samples that were 

available for 34 of the 36 samples that were subjected to expression profiling (17 

individuals pre- and post-treatment) as described above. Extracted RNA was treated with 

DNase I (Invitrogen), and RNA was measured with a NanoDrop 1000 Spectrophotometer 

(Thermo Scientific, Waltham, MA). Each sample was diluted to approximately 0.5ng/µL 

RNA with RNase-free water. cDNA was prepared with SuperScript II Reverse 
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Transcriptase (Invitrogen) and with Oligo(dT)12-18 according to the manufacturer’s 

protocol.  

 

Validation of the top differentially expressed genes by quantitative reverse-

transcription PCR (qRT-PCR).  

SYBR Green based assays were performed for the top eight genes based on the 

RF analysis (DIP2B, ZCCHC6, RBPJ, PELI1, FNDC3B, TLR2, LTBR, NT5C2) that were 

upregulated in peripheral blood leukocytes (PBL) after treatment in participants who 

experienced moderate AEs . Four housekeeping genes (SDHA, ACTB, HPRT1 and 

YWHAZ) were used as controls for these experiments. We chose these based on prior 

validation as housekeeping genes by others (35) and because our results confirmed their 

stable gene expression before and after treatment. Pre-validated primer sets for the eight 

target genes were purchased from KiCqStart SYBR Green Primers (Sigma-Aldrich), and 

primers for the four housekeeping genes were made using previously published 

sequences (IDT, Coralville, IA) (Supplemental Table 3). Real-time PCR reactions were 

performed with 10µL of SYBR Green Master Mix (Applied Biosystems, Foster City, 

CA), 450 nmol/L of each primer, and 2µL cDNA (approx. 1ng RNA) with a final volume 

of 20µL. Thermal cycling was performed for 40 cycles with a QuantStudio 7-Plex Real-

Time PCR System (Applied Biosystems), and cycle threshold (Ct) values were 

determined using the manufacturer’s software. All samples were tested in duplicate, and 

each plate included a negative water control and a RNA sample that had not been treated 

with reverse transcriptase. Delta delta Ct values were calculated (36), using the geometric 

mean Ct value of three housekeeping genes (SDHA, ACTB and YWHAZ) as a 
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normalization factor (35). Student’s t-tests were performed to compare baseline and post-

treatment delta Ct values by AE group.  

 

Statistical methods. 

All statistical analyses were performed with IBM SPSS (version 23). Shapiro-

Wilk tests were used to test for normality in each sample set, and additional tests were 

performed as described in each section above. Logistic regression analysis was performed 

with the binary dependent variable AEs (moderate AEs vs. no AEs). The independent 

variables considered included age, sex, treatment arm, baseline Mf/mL, and baseline 

CFA level.   

Separate RF analyses of gene expression and plasma biomarker data were 

performed 10 times using 1000 trees. The output was the average Mean Decrease in 

Accuracy over the 10 runs for each variable.  

 

Ethical review. 

Institutional review boards in Cleveland, USA (University Hospitals Cleveland 

Medical Center IRB #08-14-13) and in Côte d’Ivoire (Comité National d’Ethique et de la 

Recherche, CNER, N: 008/MSLS/CNER/-kp) approved the clinical trial study protocol. 

Written informed consent was received from all participants prior to inclusion in the 

study. 
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3.4  Results. 

Study population. 

This study of the pathogenesis of AEs that occur after LF treatment used human 

samples that were obtained as part of a clinical trial for LF that was conducted in Côte 

d’Ivoire. Full results from that study have not yet been published, but early results from 

the study have been reported in published abstracts (4, 5). Briefly, 189 W. bancrofti-

infected adults were randomly assigned to one of four treatment arms as described above, 

and all participants had AE assessments performed 24 hr after treatment. The AE study 

enrolled a subset of 95 treated participants. Supplemental Table 1 summarizes the 

specific analyses that were performed on samples from each of the 95 individuals. Nine 

of these participants experienced moderate AEs (Table 1), 24 had mild AEs, and 62 had 

no AEs. There was no difference in age or sex distribution between the three AE groups 

(Supplemental Table 4). 

 

Multiple additional filarial antigens were detected in post-treatment plasma 

samples.  

Baseline CFA levels were positively correlated with baseline Mf counts 

(Spearman’s rho: 0.51, P < 0.001), and absolute CFA levels were significantly higher at 

baseline in individuals who developed moderate AEs compared to individuals who 

developed mild or no AEs after treatment (P = 0.012 by Kruskal-Wallis H test). Plasma 

CFA levels increased post-treatment in all three AE groups, but the increases were 

greater in persons with moderate AEs (P < 0.05 by Kruskal-Wallis H test) (Figure 1A). 

Percent changes in CFA levels post-treatment were significantly lower in the individuals 
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treated with only ALB compared to those in individuals treated with IVM/ALB or IDA 

(P < 0.0001 by Kruskal-Wallis H test).  

Western blot analysis was performed for nine pre- and post-treatment plasma 

pairs to compare CFA patterns detected in plasma before and after treatment. All nine 

pretreatment plasma samples contained only a single high molecular weight parasite 

antigen as expected, and this antigen was also present in post-treatment plasma samples. 

However, four of the post-treatment plasma samples contained many parasite antigens 

that were not present before treatment. Two examples are shown in Figure 1B (P1 had 

moderate AEs, and P2 had mild AEs), and this pattern was also observed in plasma from 

two other participants who experienced moderate AEs following treatment. Western blot 

results obtained with five other post-treatment plasma samples tested (3 from persons 

with moderate AEs, and 2 from persons with no AEs) were no different from those 

observed in pre-treatment samples.  

 

CIC did not increase post-treatment and the classical complement pathway was not 

activated in individuals with moderate AEs. 

All pre- and post-treatment samples contained CIC. However, there was no 

difference in CIC levels between the two AE groups before or after treatment, and CIC 

levels did not significantly change after treatment in either AE group (Supplemental 

Figure 1). There was also no difference in post-treatment CIC levels between the 

treatment arms.  

C3 levels significantly decreased post-treatment in individual with moderate AEs, 

but this change was not observed in individuals with no AEs (Figure 2A). C4 levels did 
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not change in either AE group (Figure 2B). Factor B levels decreased post-treatment in 

most individuals with moderate AEs, but three individuals had increases in FB levels, and 

the group differences were not significant (Figure 2C).  

 

LPS binding protein levels increased post-treatment in individuals with moderate 

AEs. 

LBP was detected in all pre- and post-treatment samples. LBP levels increased 

post-treatment in individuals with moderate AEs (P = 0.0007 by paired t-test), but they 

did not increase in individuals with no AEs (Figure 2D). 

 

Many plasma cytokines increased in plasma after treatment in persons who 

experienced moderate AEs.  

Plasma cytokine levels before and after treatment are shown by AE group in 

Figure 3. Seven cytokines (IL-8, MCP-1, VEGF, TNF-α, MIP-1β, G-CSF and IFN-γ) 

increased post-treatment only in individuals who experienced moderate AEs (P < 0.05 by 

Wilcoxon signed-rank test). Five cytokines (IL-6, IL-10, IL-1RA, IP-10 and MIP-1α) 

increased post-treatment in individuals with and without AEs (P < 0.05 by Wilcoxon 

signed-rank test), but three of these (IL-6, IL-10 and IL-1RA) had significantly higher 

levels post-treatment in individuals with moderate AEs compared to individuals with no 

AEs (P < 0.05 by Mann-Whitney U tests) (Figure 3). The remaining 15 cytokines (IL-1β, 

IL-2, IL-4, IL-5, IL-7, IL-9, IL-12 (p70), IL-13, IL-15, IL-17, basic FGF, eotaxin-1, GM-

CSF, PDGF-BB and RANTES) did not change after treatment in either AE group. There 

was no difference in pre-treatment cytokine levels between individuals that would 
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develop moderate AEs and individuals that would not develop AEs for any of the 27 

cytokines.  

 

Changes in gene expression associated with moderate post-treatment AEs. 

Raw and processed RNA-seq data are available to the public on NCBI’s Gene 

Expression Omnibus (Accession number: GSE110146).  

We analyzed changes in gene expression in PBL after treatment to further 

elucidate host responses associated with AEs. Post-treatment gene expression profiles 

from persons who developed moderate AEs clustered together using a clustering 

dendrogram based on gene expression profiles across all genes (Figure 4A). Post-

treatment AE samples were significantly overrepresented in the fourth group (bolded in 

Figure 4A, P-value < 0.0001 for enrichment within the cluster, two-tailed binomial 

distribution with unequal variance). Higher levels of baseline Mf/mL were also observed 

in this group (P-value = 0.038, Mann-Whitney U test), but none of the other metadata 

categories (treatment arm or village) were over-represented. Age also did not affect 

clustering. A similar pattern was observed by principal components analysis  (Figure 4B), 

where post-treatment moderate AE samples clustered together and were clearly separated 

from their pre-treatment controls (P-value = 0.005 by PERMANOVA (30)). No other 

differences were significant between the four groups by PCA.  

We used differential gene expression analysis to identify the genes that were 

responsible for the clustering of the post-treatment moderate AE samples. At a very 

stringent significance threshold (P < 10-5 according to DESeq2 output), 783 genes were 

identified to be upregulated after treatment (n=744) or before treatment (n=39) in 
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individuals who experienced moderate AEs (Figure 4C). No differences were observed 

pre- or post-treatment in individuals with no AEs when this stringent significance 

threshold was used. However, at a less stringent P-value of 0.05, there were 126 genes 

upregulated post-treatment and 19 genes upregulated pre-treatment in individuals without 

AEs (Figure 4D). There was only one overlapping gene in the genes upregulated pre-

treatment in individuals with and without AEs, whereas the majority of the genes 

upregulated post-treatment in individuals with no AEs were also upregulated post-

treatment in individuals with AEs (Figure 4E).  

We then assessed whether there was evidence for functional enrichment in the 

genes upregulated post-treatment in individuals with AEs. Among the 744 upregulated 

genes post-treatment in the AE samples a total of 35 enriched biological pathways 

(KEGG) were identified (Supplemental Table 5), and these included TLR signaling and 

downstream pathways such as NF-κB, TNF and Jak/STAT. Many individual genes in the 

TLR signaling pathway, including TLR2, TLR6, STAT1 and STAT2, were identified by 

DESeq2 to be significantly upregulated post-treatment in individuals with AEs. A 

separate analysis (i-cisTarget) predicted that six transcription factors were over-

represented in the differentially expressed genes (Supplemental Table 6), and three of 

these, STAT1, STAT2 and IRF1, are downstream of TLR signaling. Convincingly, STAT1 

and STAT2 were therefore identified by two independent analyses, signifying the 

importance of these two transcription factors in the development of AEs. IRF1 is 

activated by IFN-γ and is a major transcription factor of IL-8, and correspondingly both 

IFN-γ and IL-8 levels significantly increased post-treatment in individuals with AEs. The 

complete TLR signaling pathway highlighting the individual upregulated genes, KEGG 
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pathways and transcription factors, was constructed with the use of the online database 

SPIKE (37) (Supplemental Figure 2). Finally we wanted to compare our newly identified 

LF AE transcriptional signature to published gene expression profiles. The post-treatment 

AE transcriptional signature of the 744 upregulated genes was very similar to multiple 

published endotoxin exposure gene expression profiles, in addition to many other profiles 

(Supplemental Table 7).  

After successfully identifying a significant transcriptional signature of post-

treatment AEs, we explored whether a pre-treatment transcriptional signature could 

predict what individuals would go on to develop AEs after treatment. There were no 

significant differentially expressed genes at baseline between individuals that would 

develop moderate AEs, and individuals that would not develop AEs (by DESeq2). 

 

Neutrophils increased and lymphocytes decreased post-treatment. 

Changing cell populations can have a large effect on gene expression profiles. 

Differential cell counts were unavailable, so cell type proportions were estimated using 

the RNA-seq data. This analysis suggested that neutrophils increased more and 

lymphocytes decreased more post-treatment in individuals with AEs compared to 

individuals with no AEs (Fig. 5A). These changes are consistent with stress-type immune 

responses. For simplicity, B cells (memory and naïve), T cells (CD8, CD4 naïve and 

memory resting) and NK cells were combined into one category (lymphocytes) in Figure 

5A, and ungrouped data are presented in Supplemental Figure 3. Estimated leucocyte 

proportions at baseline were very similar between the two AE groups, but individuals 
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who experienced post-treatment AEs had significantly fewer estimated memory B cells 

compared to individuals who did not develop AEs after treatment (Figure 5B). 

 

Prioritization of genes upregulated post-treatment in individuals with AEs show 

that TLR2 is one of the most important genes for the development of AEs. 

The genes upregulated post-treatment in individuals with AEs were prioritized by 

importance for AE development using a machine-learning tool (RF analysis). This was 

done in order to identify genes with the strongest associations between expression levels 

and development of AEs and to identify genes of interest for PCR validation. Table 2 

shows the top 15 genes that were upregulated in persons who developed moderate AEs 

after treatment. However, based on this analysis it was not possible to determine whether 

the gene expression changes were the cause or effect of the AEs that were experienced. 

 

Orthogonal validation of expression levels for candidate genes confirmed RNA-seq 

data. 

qRT-PCR studies were performed to confirm whether expression of genes 

identified by DESeq2 and RF analyses was actually increased post-treatment in 

individuals with moderate AEs. Increased expression after treatment was confirmed for 

seven of the top eight genes (DIP2B, ZCCHC6, PELI1, FNDC3B, TLR2, LTBR and 

NT5C2) (Figure 6). Expression of the eighth gene (RBPJ) did not change after treatment 

in either AE group. Expression of the housekeeping gene HPRT1, did not change with 

treatment in either AE group (as expected). 
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Modeling identified high baseline CFA levels as predictor for development of post-

treatment AEs and post-treatment increases in LBP levels as another risk factor. 

We were unable to identify any pre-treatment transcriptional signature that could 

predict moderate AEs. We therefore wanted to assess if any metadata or baseline 

infection parameter was associated with the development of moderate AEs. A logistical 

regression was performed to consider effects of age, sex, treatment arm, baseline Mf/mL 

and baseline CFA on the risk for development of post-treatment moderate AEs. A total of 

71 individuals were included in the model (9 moderate AEs and 62 no AEs). The logistic 

regression model was statistically significant, X2 (6) = 22.1, P = 0.0012. The model 

explained 50.2% (Nagelkerke R2) of the variance in AE outcome, and correctly predicted 

93% of outcomes. However the model was better at predicting people who did not 

develop AEs; it correctly predicted  only 44.4% of the individuals who developed 

moderate AEs. Increasing baseline CFA levels were associated with increased likelihood 

of developing AEs (P = 0.022), but the other independent variables did not significantly 

contribute to the model. RF analysis was performed on the same dataset (71 individuals), 

and this also identified the baseline CFA level as the best predictor for subsequent 

development of AEs. However, treatment arm was also a positive predictor in the RF 

model, and could therefore be related with the development of AEs (Table 3). It was 

surprising that baseline Mf count was not identified by the logistic regression model or 

RF to significantly contribute to correctly predicting AEs. However, baseline Mf counts 

were higher in individuals who developed moderate AEs (geometric mean 343 Mf/mL) 

compared to individuals with no AEs (geometric mean 188 Mf/mL), and this difference 

was significant (P = 0.036 by Mann-Whitney U test). RF analysis was also used to 
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identify the variable (CFA, CIC, C3, C4, FB or LBP) that was best at classifying AE 

outcome based on post-treatment fold change in the 18 matched case-control subjects. 

LBP changes after treatment was the only variable that was significantly associated with 

the development of AEs (Supplemental Table 8).  

 

3.5  Discussion. 

This study looked at changes in proteins in plasma and changes in gene 

expression in PBL in persons who experienced moderate AEs following treatment of LF.  

 

Changes in proteins in plasma in persons who experienced AEs after treatment.  

Filarial antigen levels increased in plasma after treatment in individuals with 

moderate AEs, and this agreed with our recently published results from a separate clinical 

trial (13). Western blot results from this study showed that many new filarial antigens 

with the carbohydrate epitope detected by the monoclonal antibody AD12 appeared in the 

blood 24 hours after treatment in some individuals. In contrast, only a single high 

molecular weight antigen circulates in the blood of W. bancrofti-infected individuals 

without treatment (26). We postulate that treatment kills or injures worms so that they 

release internal antigens that are normally concealed inside the parasite.  

Results from this study also confirmed our previous finding that plasma CIC 

levels do not increase after treatment of LF in persons who develop moderate AEs (13). 

This finding suggests that AEs after LF treatment are not caused by CIC. The 

complement cascade (classical pathway) modulates pro-inflammatory effects of CIC 

(38). Activation of the classical complement cascade leads to decreased C3 and C4, 
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whereas activation of the alternative pathway (AP) leads to decreased C3 and factor B 

(FB). Our results are most consistent with activation of the AP by parasite antigens, as C3 

and FB decreased in individuals with moderate AEs while there was no change in C4 

levels. The RNA-seq data also supports the AP hypothesis, because expression of CFP 

(complement factor properdin- a positive regulator and initiator of the AP) significantly 

increased post-treatment in individuals with moderate AEs (adjusted P-value 0.001, 

DESeq2). In contrast, expression of C4B (basic form of C4, part of the classical pathway) 

significantly decreased (adjusted P-value 0.04, DESeq2) post-treatment in individuals 

with moderate AEs. Additionally, IFN-γ and TNF-α are known to induce FB synthesis 

(39). This could account for the inconsistent FB levels post-treatment in individuals with 

moderate AEs, because both IFN-γ and TNF-α increased in these individuals; the positive 

stimulus of these cytokines may have counteracted decreases in FB levels as it was used 

in the AP. In summary, many different filarial antigens were transiently released post-

treatment, but they did not appear to form CIC or activate the classical complement 

cascade. 

PBL appeared to respond to the release of filarial antigens by releasing cytokines, 

and the cytokine profiles of post-treatment AEs in LF infected individuals are complex. 

In our previous study of samples from a treatment trial in Papua New Guinea, we 

reported that 16 cytokines increased post-treatment in individuals with moderate AEs 

(13), and eight of these cytokines were also increased after treatment in this study (IL-

1RA, IL-6, IL-10, G-CSF, MCP-1, MIP-1β, TNF-α, and VEGF). It is not surprising that 

more cytokines increased in the previous study, because more time-points were sampled. 

Also, participants in the Papua New Guinea study had higher blood Mf counts and higher 
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rates and severity of AEs than participants in the present study, and this may account for 

their stronger cytokine responses. A new finding in this study was the increase in IFN-γ 

post-treatment in individuals with moderate AEs. This was supported by the fact that 

IRF1 (downstream of IFN-γ) was identified to be an important transcription factor for AE 

development. The increase in IL-8 levels paralleled the increase in neutrophils post-

treatment in individuals with moderate AEs. Results from this study did not confirm the 

finding from the prior Papua New Guinea study that high levels of eotaxin-1 pre-

treatment are a risk factor for development of post-treatment AEs. Again this discrepancy 

may be related to differences in infection intensity between participants in the two 

studies. Levels of IL-6 and TNF-α have previously been shown to positively correlate to 

levels of Wolbachia DNA in human plasma 48 hours after treatment of LF (40). 

 

Changes in gene expression in PBL in persons who experienced moderate AEs after 

treatment.  

RNA-seq was performed to better understand changes in leukocyte gene 

expression that occur in persons who experienced moderate AEs after treatment. We 

identified a distinctive transcriptional signature associated post-treatment moderate AEs 

with 783 genes that were differentially expressed (at the P < 10-5 level) in persons who 

experienced moderate AEs. In contrast, no gene was differentially expressed at that level 

of significance before or after treatment in individuals who did not experience AEs. 95% 

of the 783 genes associated with AEs exhibited increased expression post-treatment. 

Thus, moderate AEs were primarily associated with upregulation of gene expression and 

not with gene suppression. A total of 126 genes were upregulated post-treatment in 
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individuals with no AEs at the low stringency P < 0.05 level, but 83% of these genes 

were also upregulated post-treatment in individuals with moderate AEs. Thus changes in 

gene expression after treatment did not always lead to clinically evident AEs.  

The transcriptional signature results are consistent with the hypothesis that 

Wolbachia lipoprotein activates TLR2-TLR6 (18, 41), as bacterial lipoproteins can 

induce pro-inflammatory responses through TLR2 signaling and NF-κB and STAT1 

activation (42). The finding that TLR2 was one of the genes most highly associated with 

the development of moderate AEs also supports this hypothesis. Furthermore, LBP was 

found to increase post-treatment in plasma from individuals with moderate AEs, and RF 

analysis identified LBP (fold change post-treatment) as the best variable for classifying 

AE outcome. LBP is an acute-phase protein that is mostly known for its function of 

shuttling LPS to TLR4 via CD14. However, it can also shuttle lipoproteins to TLR2 also 

via CD14 (43) as would be the case with PAL. CD14 expression was upregulated post-

treatment in individuals with moderate AEs, and it had one of the most significant 

adjusted P-values (6.4e-26) in the dataset. CD36 is another accessory receptor for the 

TLR2-TLR6 heterodimer (44), and this gene was also upregulated post-treatment in 

individuals with moderate AEs (adjusted P-value 0.004). The LF AE transcriptional 

signature was similar to previously published endotoxin exposure gene expression 

profiles further supporting the Wolbachia lipoprotein hypothesis. Since multiple filarial 

antigens that are normally not accessible to the immune system are released post-

treatment, it is possible that Wolbachia components are released into the host’s 

circulation in a similar fashion. Thus we cannot be certain that Wolbachia lipoprotein is 

the only or prime trigger for AEs. It is possible that other filarial components can signal 
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through TLRs and contribute to the development of AEs, and this might explain why 

expression of many other TLRs (TLR1, TLR4, TLR5, TLR6 and TLR8) were upregulated 

post-treatment in individuals with moderate AEs. Many different ligands can activate 

TLR2, including protozoan ligands such as GPI anchors from Trypanosoma cruzi (45) 

and Leishmania major (46). Wolbachia-independent activation of the immune system 

causing severe AEs is seen in Loa loa (a filarial worm that lacks Wolbachia (1)) infected 

individuals post-treatment suggesting that Wolbachia is not the sole cause of AEs after 

anti-filarial treatment. TLR signaling is clearly associated with the development of AEs, 

but complement activation has similar downstream effects, and there is considerable 

crosstalk between these two pathways (47). Thus both TLR signaling and the 

complement AP could be actively involved in the pathogenesis of AEs. Another possible 

mechanism for AEs following treatment of LF is that treatment abrogates the normally 

dominant Th2 immune responses stimulated by helminth infections that interfere with the 

expression and function of TLRs (48). Increased TLR expression and signaling after 

treatment may then induce pro-inflammatory Th1 responses causing AEs. Indeed, classic 

Th1 cytokines TNF-α and IFN-γ were increased after treatment in people with moderate 

AEs. 

We did not detect a pre-treatment transcriptional signature that was a significant 

risk factor for development of post-treatment AEs. Baseline CFA levels were the best 

predictor for moderate AEs in this study, and this was the only variable that was a 

significant predictor by logistic regression. CFA levels are correlated with Mf counts and 

likely with adult worm numbers, and this result suggests that CFA levels are related to 
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the total parasite biomass that can potentially contribute to the development of AEs after 

treatment.   

 

Genes upregulated post-treatment in individuals with AEs. 

An important finding from this study was that post-treatment AEs in LF-infected 

individuals are associated with upregulation of hundreds of genes. A prioritized list of the 

top 15 genes important for the development of AEs is listed above in Table 2. These 

genes and their associated pathways may provide insight into the pathogenesis of AEs. In 

addition to the TLR pathway, Notch, NF-κB and IL-1 signaling were common themes. 

Four of the top 15 genes (RBPJ, TLR2, ALDH1A2 and APLP2) are involved in 

TLR/Notch signaling. The Notch pathway is involved in development and is conserved 

from Drosophila to mammals. RBPJ is involved in the crosstalk between TLR and Notch 

signaling that is thought to help fine-tune the immune response through negative and/or 

positive feedback (Supplemental Figure 4) (49). NF-κB is another downstream pathway 

of Notch signaling, and three of the top 15 genes (PELI1, TLR2 and LTBR) are involved 

in NF-κB signaling. TLR2 is a receptor for the canonical NF-κB pathway, and PELI1 is 

involved in intracellular downstream signaling. The canonical pathway results in the 

release of pro-inflammatory cytokines, such as IL-6 and TNF-α. Thus, activation of this 

pathway is consistent with the cytokine profiles individuals who experienced moderate 

AEs after treatment. Interestingly, lymphotoxin beta receptor (LTBR) stimulation has 

been shown to enhance the LPS-induced expression of IL-8 via the combined action of 

NF-κB and IRF1 (50), and this is consistent with our results. Finally, IL-1 is clearly 

associated with the development of AEs. IL-1RAP was one of the top 15 genes identified 
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by RF, and this gene is one of two co-receptors for IL-1. Additionally, expression of the 

second co-receptor IL-1R1 was increased post-treatment in individuals with AEs. Both 

expression (this study) and plasma levels (our prior study (13)) of IL-1β increased after 

treatment in individuals with AEs. Inhibitors of the IL-1 pathway were also upregulated 

post-treatment in individuals with AEs. This included both increased expression and 

protein levels of IL-1RA and increased expression of the IL-1β decoy receptor IL-1R2. 

These results illustrate the importance of the balance between the pro-inflammatory 

effects of IL-1β and the anti-inflammatory effects of IL-1RA for AE development.  

 

Limitations of the study.  

One limitation of this study was that the RNA-seq was performed on mixed PBL 

samples. This makes it difficult to separate the effects of altered gene expression from the 

effects of changing cell type proportions. Separating different types of leukocytes was not 

feasible, because the samples were collected in rural Côte d’Ivoire and processed in a 

simple field lab. On the other hand, this study provides insight into the pathogenesis of 

post-treatment AEs. Additionally, it was possible to estimate the different cell subtypes 

present in PBLs using the RNA-seq data, so we could associate changes in gene 

expression with altered cell types to decrease the chance that the former was a directly 

result of the latter. For example, if the post-treatment AE transcriptional signature had 

been similar to a neutrophil gene expression profile it could have been caused by the 

increasing proportion of neutrophils post-treatment and not due to specific neutrophil 

activation during AEs. Another limitation was that we did not study an untreated control 

group, because it would have been unethical to withhold treatment from infected 
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individuals. For the cytokine analysis we did not correct for multiple comparisons, 

however, the results are generally consistent with our previous findings (13), and this 

increases our confidence in the results. Based on the standard significance level of 0.05, 

approximately 3 differences would be expected to be significant by chance for 54 tests 

(27 cytokines measured pre- and post-treatment in two AE groups), whereas 17 

comparisons were significant at the 0.05 level in this study. The semi-quantitative 

Filariasis Test Strip (FTS) was used to assay CFA in the field, whereas a quantitative 

ELISA was used to measure CFA levels in the laboratory setting in this study. Newer 

studies have demonstrated that tests that detect LF CFA (including FTS) can cross-react 

with L. loa antigens that circulate in  blood from a subset of  individuals with heavy 

infections (51), and with biological samples from animals infected with L. loa and 

Onchocerca ochengi (52, 53). This cross-reactivity was not a concern for this study 

because L. loa is not endemic to Côte d’Ivoire, and the area of Côte d’Ivoire where the 

study was conducted is non-endemic for O. volvulus.  

In future studies it would be interesting to measure Wolbachia DNA in pre and 

post-treatment samples from individuals with AEs after treatment of LF and 

onchocerciasis to try to correlate bacterial DNA release with host expression profiles 

post-treatment. Wolbachia DNA has been shown to increase post-treatment in individuals 

with AEs after treatment of LF (14). Additionally, peak Wolbachia DNA levels have 

been shown to be correlated with AE reaction scores in individuals treated with DEC or 

IVM for onchocerciasis (54). 
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Conclusions. 

This study included first global RNA-seq analysis of PBLs from LF-infected 

individuals, and it has provided novel insights into the pathogenesis of a clinically 

relevant problem. The samples were ideal for studying AEs after LF treatment, because 

each post-treatment sample was paired with a pre-treatment sample from the same 

individual. This internal control improved our ability to study the AE phenotype in 

humans. AEs represent a significant challenge for the global program to eliminate LF, 

and the fear of AEs in communities receiving MDA is a main factor that reduces 

compliance (25). Minimizing the impact of AEs has therefore been identified as a key 

component for successful MDA programs (25). More than 850 million individuals have 

been treated as part of GPELF, and a significant percentage of these individuals 

experience AEs.  

This study has also provided a framework for investigating the host responses 

associated with severe AEs that occur after treatment of other filarial worms such as O. 

volvulus and L. loa.  Treatment of other, more familiar infections can also result in severe 

AEs that are caused by host responses to dying pathogens. This Jarisch-Herxheimer 

reaction occurs after antibiotic treatment of spirochetal infections such as syphilis, Lyme 

disease, leptospirosis, and relapsing fever, and it is also hypothesized to be caused by the 

release of bacterial lipoproteins that activate TLR2 (55). The transcriptomic response 

during the Jarisch-Herxheimer reaction has not been studied, so the dataset from this 

study could provide a valuable starting point for research on this related clinical problem. 

To recap our major findings, this study has provided new insights regarding the 

pathogenesis of post-treatment AEs in LF-infected individuals. Our results are consistent 
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with the hypothesis that a Wolbachia lipoprotein triggers AEs by binding to TLR2-TLR6, 

but other uncharacterized filarial antigens might also play a role. Since TLR, NF-κB, and 

TNF pathways are involved, these pathways could potentially be targeted to prevent or 

treat AEs after LF treatment. We also found that high pre-treatment CFA levels were the 

best predictors of post-treatment AEs. This finding could be relevant for treatment-naïve 

areas with high LF infection prevalence and intensities. Individuals with high CFA levels 

pre-treatment (assessed with the FTS (56)) could be offered non-steroidal anti-

inflammatory medications together with antifilarial medications for home management of 

moderate or severe AEs. However, a positive FTS from an individual who resides in or 

has traveled to an area that is also endemic for L. loa needs to be interpreted with caution 

due to the issues of cross-reactivity mentioned above. Information from this study should 

allow program managers and drug distributors to reassure populations and communicate 

to them that AEs experienced after LF treatment are transient and caused by host 

responses to dying or injured parasites.  
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Figure 3.1: Filarial antigens increase post-treatment in individuals with moderate adverse events 
(AEs).  
 
Circulating filarial antigen (CFA) levels increased significantly more post-treatment in 
individuals who experienced moderate adverse events (mod AEs) compared to individuals with 
no AEs (P < 0.05 by Kruskal-Wallis) (n=62 with no AEs, n=24 with mild AEs, n=9 with 
moderate AEs). Boxes indicate the interquartile range (25th and 75th percentile of data 
distribution), and horizontal lines within the boxes are median values. The whiskers show 95% 
confidence intervals around the median values. 
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Figure 3.2: Levels of complement components and lipopolysaccharide binding protein (LBP) 
pre- and post-treatment (n=9 with moderate adverse events (AEs), n=9 with no AEs). 
 
[A] Complement component 3 (C3) significantly decreased post-treatment in individuals with 
moderate AEs (*P = 0.03 by paired t-test). [B] Complement component 4 (C4) did not change 
with treatment in either AE group. [C] Complement Factor B (FB) did not change with treatment 
in either AE group. [D] LBP levels significantly increased post-treatment in individuals with 
moderate AEs (***P = 0.00007 by paired t-test).  
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Figure 3.3: Post-treatment fold changes for 12 cytokines in nine participants who experienced 
moderate AEs and in nine participants who had no AEs. 
 
Levels of IL-8, MCP-1, VEGF, TNF-α, MIP-1β, G-CSF and IFN-γ significantly increased post-
treatment in individuals with moderate AEs, and levels of IL-1RA, IL-6, IL-10, MIP-1α and IP-
10 increased significantly post-treatment in individuals with moderate AEs and in individuals 
with no AEs (*P < 0.05, **P < 0.001 by Wilcoxon signed-rank tests). IL-1RA, IL-6 and IL-10 
increased more in individuals with moderate AEs (*P < 0.05 by Mann-Whitney U tests). 
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Figure 3.4: Overall expression patterns and enrichment pre- and post-treatment (n=9 with 
moderate adverse events (AEs), n=9 with no AEs).  
 
[A] Sample clustering (Euclidean distance) based on gene expression profiles across all genes. 
Post-treatment AEs (red) samples are significantly overrepresented in the fourth group (bolded, 
P < 0.0001, binomial distribution). Treatment arms; A: albendazole (ALB), IA: ivermectin 
(IVM) and ALB, IDA: IVM, diethylcarbamazine and ALB. [B] Principal component analysis of 
paired samples. Post-treatment AEs samples (red) are significantly different from their pre-
treatment controls (yellow) (P = 0.005 by PERMANOVA). No other differences between the 
four groups are significant. [C[/[D] Expression plots comparing pre- and post-treatment gene 
expression in individuals with moderate AEs [C] and individuals with no AEs [D]. Red dots 
represent genes significantly upregulated post-treatment, and blue dots are genes significantly 
upregulated pre-treatment (P < 10-5 for the AE group [C], and P < 0.05 for the no AE group [D] 
from DESeq2). [E] Overlap between the genes upregulated pre- and post-treatment between the 
two AE groups. 
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Figure 3.5: Estimated leucocyte subtypes (CIBERSORT) for the two adverse events (AEs) 
groups. 
 
[A] Percent change post-treatment of leukocyte subtypes. Estimated lymphocytes decreased 
more and estimated neutrophils increased more post-treatment in individuals with moderate AEs 
(n=9) compared to individuals with no AEs (n=9). [B] Estimated leukocyte proportions pre-
treatment. Individuals that did not develop AEs (n=9) had higher levels of estimated memory B 
cells pre-treatment compared to individuals that developed moderate AEs (n=9). *P < 0.05 by 
Mann-Whitney U tests.  
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Figure 3.6: qRT-PCR validation of RNA-seq data. 
 
Post-treatment fold change of the top eight genes identified by random forest analysis. Seven of 
the genes (DIP2B, ZCCHC6, PELI1, FNDC3B, TLR2, LTBR and NT5C2) significantly increase 
only in individuals with moderate adverse events (AEs) (n=8) compared to individuals with no 
AEs (n=9). *P < 0.05, **P < 0.001 by t-tests. HPRT1 is a housekeeping gene that should not 
change with treatment in either AE group. 
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Table 3.1: Clinical characteristics of the nine individuals with moderate adverse events (AEs) 
after LF treatment. 
 
ID Treatment arm Sex Age Mf/mLA Objective AEsB 

(Pre and Post)C 
Subjective AEsD 

5 IVM/ALB M 35 349 37.0 - 38.5 HA(1), fever(1) 
6 IVM/ALB M 60 700 120/70 - 100/60 HA(1), N/V(1) 
7 IVM/DEC/ALB F 32 264 35.7 - 38.0 Fever(2), joint pain(1) 
8 IVM/DEC/ALB M 48 660 36.7 - 38.2 HA(1), fever(1), rash(1), 

cough(1) 
9 IVM/DEC/ALB M 52 229 36.3 - 37.4 HA(2), fever(2), rash(1), 

joint pain(1), fatigue(1) 
10 IVM/DEC/ALB M 34 308 37.0 - 37.8 HA(1), fever(1), joint 

pain(1), muscle pain(1), 
fatigue(1) 

11 IVM/ALB M 29 560 37.5 - 38.5 Fever(1), rash(1), muscle 
pain(1) 

12 IVM/DEC/ALB M 69 503 170/90 - 120/80 N/V(1), rash(2), dark 
urine(1), cough(1), joint 

pain(1) 
17 IVM/DEC/ALB M 32 79 37.0 - 37.9 N/V(2), dyspnea(2) 
	
AMf/mL: microfilaria per mL of blood. BObjective AEs: increase of at least 0.8°C to at least 
37.4°C post-treatment (axillary temperature), or a decrease of at least 20mmHg systolic pressure 
post-treatment. CPre- and post-treatment temperatures or blood pressures are shown. DSubjective 
AEs: symptoms that the patient reported during the review of systems questions. Grades: 1; mild 
symptom and patient could attend work or school. 2; patient could not attend school/work. HA: 
headache, N/V: nausea/vomiting. 
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Table 3.2: Top 15 genes associated with development of moderate adverse events in LF patients 
after treatment as identified by random forest analysis. 
 

Gene Gene Description Mean Decrease 
in Accuracy 

DIP2B Disco interacting protein 2 homolog B 3.30 
ZCCHC6 Zinc finger CCHC-type containing 6 3.18 
RBPJ Recombination signal binding protein for Ig kappa J region 3.07 
PELI1 Pelino E3 ubiquitin protein ligase 1 2.99 
FNDC3B Fibronectin type III domain containing 3B 2.95 
TLR2 Toll like receptor 2 2.79 
LTBR Lymphotoxin beta receptor 2.65 
NT5C2 5’-nucleotidase, cytosolic II 2.57 
KIAA1551 KIAA1551 2.32 
ALDH1A2 Aldehyde dehydrogenase 1 family member A2 2.08 
ZSWIM6 Zinc finger SWIM-type containing 6 1.97 
APLP2 Amyloid beta precursor like protein 2 1.95 
MYLIP Myosin regulatory light chain interacting protein 1.95 
FGD4 FYVE, RhoGEF and PH domain containing 4 1.92 
IL1RAP Interleukin 1 receptor accessory protein like 2 1.90 
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Table 3.3: Logistic regression and random forest analysis of sex, age, treatment arm and 
baseline infection parameters on the development of moderate adverse events. 
 
 Logistic Regression Model  Random Forest 
Variable B Odds ratio P-value  Mean Decrease in Accuracy 
Constant -4.79 - 0.006  - 
Sex -0.24 0.79 0.878  -2.82 
Age 0.03 1.03 0.390  -0.94 
Treatment armA 

             IDA 

              ALB 

 
0.54 

-19.28 

 
1.72 
0.00 

 
0.558 
0.998 

 4.33 

Mf/mL 0.00 1.00 0.753  -2.82 
CFA 0.02 2.69B 0.022  11.57 
 

AThe coefficients for treatment arms are contrasts with the standard treatment, ivermectin (IVM) 
plus albendazole (ALB). IDA: IVM, diethylcarbamazine (DEC) and ALB. BReported odds ratio 
for CFA (circulating filarial antigen) is for an increase of 50 ng/mL, because the range of CFA 
concentrations was wide (7-700 ng/mL). 
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Supplemental Figure 3.1: Circulating immune complex levels.  
 
Mean circulating immune complex (CIC) levels ± standard error pre and post-treatment in 
individuals with no adverse events (AEs) (n=33) and individuals with moderate AEs (n=8). 
There was no significant difference between pre- and post-treatment values within the two AE 
groups (Wilcoxon signed-rank test), or between the two AE groups (Mann-Whitney U tests). 
AHG: aggregated human gamma globulin. 
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Supplemental Figure 3.2: Overview of TLR signaling. 
 
TLR signaling pathway with highlighted upregulated genes in black (based on DESeq2 analysis) 
and upregulated KEGG pathways (based on WebGestalt analysis) in red. Overrepresented 
transcription factors (based on i-CisTarget analysis) are in blue. 
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Supplemental Figure 3.3: Estimated leukocyte subtypes post-treatment.  
 
	
Percent change post-treatment of leukocyte subtypes in people with and without adverse events 
(AEs). T cells (CD4 naïve) decrease more and neutrophils increase more post-treatment in 
individuals with AEs (n=9) compared to individuals with no AEs (n=9). *P < 0.05, ** P < 0.01 
by Mann-Whitney U tests. 
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Supplemental Figure 3.4: TLR and Notch.  
 
Crosstalk between the TLR signaling pathway and the Notch pathway. Expression and/or 
function of various components of the Notch pathways could be regulated by TLR signaling. 
Conversely, Notch pathway components positively or negatively modulate TLR-activated 
transcriptional, translational, and metabolic programs to finetune outcomes of immune responses 
Figure and text from Shang Y, Smith S, and Hu X. Role of Notch signaling in regulating innate 
immunity and inflammation in health and disease. Protein Cell. 2016;7(3):159-74 
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Supplemental Table 3.1: Metadata for all 95 individuals including which samples were used for 
all the experimental tests. 
 

Metadata Qualitative/quantitative data collected per individual 

Study ID Treatment 
armA Age Sex Mf/mL 

AEB 
group 

CFA 
EIA 

Western 
Blot 

CIC 
elisa 

C3/C4 
and FB LBP Cytokines 

RNA-
seq 

422046 2 24 m 64 0 yes no no no no no no 

422108 1 34 m 56 0 yes no no no no no no 

412413 4 25 m 133.5 0 yes no no no no no no 

422102 1 32 m 115 0 yes no no yes yes yes yes 

422047 1 23 m 112 1 yes no no no no no no 

422121 1 23 m 180 0 yes no no no no no no 

422111 4 39 m 463.5 0 yes no no no no no no 

412415 4 35 m 59.5 0 yes no no no no no no 

422041 4 70 f 290 1 yes no no no no no no 

422107 1 70 m 122 1 yes no no no no no no 

412435 4 18 m 217 1 yes no no no no no no 

422032 2 33 m 80 0 yes no no no no no no 

412464 4 34 m 317 0 yes no no yes yes yes yes 

412407 1 33 m 91.5 1 yes no no no no no no 

10-4614 1 30 m 629 0 yes no no no no no no 

10-4500 2 26 m 81 0 yes no no no no no no 

422074 1 45 m 88 0 yes no no no no no no 

422024 2 32 m 55 0 yes no no no no no no 

412440 1 18 m 100.5 0 yes no no no no no no 

412482 2 56 m 109 1 yes no no no no no no 

422115 2 45 m 115.5 0 yes no no no no no no 

412447 2 55 m 78.5 0 yes no no no no no no 

422117 2 50 f 110 0 yes no no no no no no 

422012 4 61 m 68 0 yes no no no no no no 

422026 2 29 m 95 0 yes no no no no no no 

412431 1 36 m 86.5 1 yes no no no no no no 

412446 1 50 f 283.5 0 yes no no no no no no 

412473 4 41 m 102.5 0 yes no no yes yes yes yes 

422034 2 62 m 210 0 yes no no no no no no 

412463 1 45 f 119.5 1 yes no no no no no no 

422078 4 52 m 229 2 yes no no yes yes yes yes 

412455 4 24 m 53.5 1 yes no no no no no no 
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422093 4 23 m 106.5 0 yes no no no no no no 

422070 2 67 f 94 0 yes no no no no no no 

412401 2 55 m 58.5 0 yes no no no no no no 

10-4588 2 40 m 270.5 0 yes no no no no no no 

422100 4 48 m 69.5 1 yes no no no no no no 

412470 2 50 m 220 0 yes no no no no no no 

422099 1 25 m 289.5 0 yes no no yes yes yes yes 

412414 2 55 m 72.5 0 yes no no no no no no 

422128 1 35 m 170.5 0 yes no yes no no no no 

412434 2 65 m 703 0 yes no yes no no no no 

422075 2 44 m 180.5 0 yes no yes yes yes yes yes 

422112 4 35 m 274 1 yes no no no no no no 

422079 2 50 m 968.5 0 yes no yes no no no no 

422058 4 22 m 329 1 yes no no no no no no 

412457 4 34 m 307.5 2 yes no yes yes yes yes yes 

10-4651 1 36 m 106 0 yes no yes no no no no 

422122 4 32 m 231.5 0 yes no yes no no no no 

422125 4 64 m  79 0 yes no yes no no no no 

412449 4 40 f 227 0 yes no yes no no no no 

422028 4 65 m 70 0 yes no yes no no no no 

422082 4 32 m 78.5 2 yes no no yes yes yes yes 

412422 1 31 m 74 0 yes no yes no no no no 

422083 1 62 m 611.5 0 yes no yes no no no no 

422031 1 31 m 291 0 yes no yes no no no no 

10-4698 2 32 m 518.5 0 yes no yes no no no no 

422060 1 40 m 66 1 yes no no no no no no 

422065 2 57 m 171 0 yes no yes no no no no 

10-4536 1 19 m 151 0 yes no yes no no no no 

422048 2 40 m 132 0 yes no yes no no no no 

422144 2 39 m 575 0 yes no yes yes yes yes yes 

412408 2 31 f 69.5 0 yes no yes no no no no 

412467 1 52 m 240 0 yes no yes no no no no 

412453 2 27 m 255 0 yes no yes no no no no 

412423 2 25 m 221 1 yes no no no no no no 

422080 1 28 m 131 1 yes no no no no no no 

422126 2 32 m 444.5 0 yes no yes no no no no 

412428 1 31 m 292.5 1 yes no no no no no no 

412469 4 18 f 265 1 yes no no no no no no 

422091 1 35 m 384 1 yes no no yes yes yes yes 
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412441 1 24 m 450 0 yes no yes no no no no 

10-4681 4 35 m 165 1 yes no no no no no no 

422094 1 26 m 423.5 0 yes no yes no no no no 

412442 2 46 f 151.5 0 yes no yes no no no no 

412426 2 18 f 307 0 yes no yes no no no no 

422076 1 35 m 348.5 2 yes yes yes yes yes yes yes 

412476 1 35 m 261 1 yes no no no no no no 

412468 1 23 f 466.5 0 yes no yes yes yes yes yes 

08-2665 4 32 m 222 1 yes no no no no no no 

412458 2 24 m 230 1 yes no no no no no no 

412411 1 29 m 560.5 2 yes yes yes yes yes yes yes 

06-4282 4 39 m 1498 0 yes no yes no no no no 

412485 4 47 m 590 0 yes no yes no no no no 

412462 4 33 m 246 0 yes no yes no no no no 

422030 4 20 m 101 0 yes no yes no no no no 

422036 4 63 m 142 1 yes no no no no no no 

422098 1 30 m 144.5 0 yes no yes yes yes yes yes 

422134 1 60 m 700 2 yes yes yes yes yes yes yes 

422087 2 35 m 860 0 yes yes yes no no no no 

412412 4 69 m 503 2 yes yes yes yes yes yes yes 

422089 4 30 f 263.5 2 yes yes yes yes yes yes yes 

412452 2 25 m 944 0 yes yes yes no no no no 

422116 4 51 m 328.5 1 yes yes no no no no no 

422077 4 48 m 659.5 2 yes yes yes yes yes yes yes 
 

ATreatment arm: 1=ALB/IVM, 2=ALB, 4=ALB/IVM/DEC 

BAE group: 0=no AEs, 1=mild AEs, 2=moderate AEs 
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Supplemental Table 3.2: Characteristics of each adverse event (AE) case and matched control 
with no AEs. 
	
ID of AE case Characteristics With AEs No AEs 
 
5 

Sex 
Age 
Mf/mL 
Treatment 

Male 
35 
349 

IVM/ALB 

Male 
30 
145 

IVM/ALB 
6 Sex 

Age 
Mf/mL 
Treatment 

Male 
60 
700 

IVM/ALB 

Male 
32 
115 

IVM/ALB 
7 Sex 

Age 
Mf/mL 
Treatment 

Female 
32 
264 

IVM/DEC/ALB 

Female 
23 
467 

IVM/ALB 
8 Sex 

Age 
Mf/mL 
Treatment 

Male 
48 
660 

IVM/DEC/ALB 

Male 
39 
575 
ALB 

9 Sex 
Age 
Mf/mL 
Treatment 

Male 
53 
229 

IVM/DEC/ALB 

Male 
41 
103 

IVM/DEC/ALB 
10 Sex 

Age 
Mf/mL 
Treatment 

Male 
34 
308 

IVM/DEC/ALB 

Male 
34 
317 

IVM/DEC/ALB 
11 Sex 

Age 
Mf/mL 
Treatment 

Male 
29 
560 

IVM/ALB 

Male 
35 
384 

IVM/ALB 
12 Sex 

Age 
Mf/mL 
Treatment 

Male 
69 
503 

IVM/DEC/ALB 

Male 
44 
181 
ALB 

17 Sex 
Age 
Mf/mL 
Treatment 

Male 
32 
79 

IVM/DEC/ALB 

Male 
25 
181 
ALB 
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Supplemental Table 3.3: Primer sequences. 
 

Gene Forward Primer Sequence Reverse Primer Sequence Company KicqStart 
Primer Pair ID 

YWAZ 
5'- ACT TTT GGT ACA TTG 
TGG CTT CAA -3' 

5'- CCG CCA GGA CAA 
ACC AGT AT -3' IDT NA 

SDHA 
5'- TGG GAA CAA GAG 
GGC ATC TG -3' 

5'- CCA CCA CTG CAT 
CAA ATT CAT G -3' IDT NA 

ACTB 
5'- CTC TGG CTC CTA GCA 
CCA TGA AGA -3' 

5'- GTA AAA CGC AGC 
TCA GTA ACA GTC CG -3' IDT NA 

HPRT1 
5'- TGC AGA CTT TGC TTT 
CCT TGG TCA GG -3' 

5'- CCA ACA CTT CGT 
GGG GTC CTT TTC A -3' IDT NA 

DIP2B 
5'- AGT CCT TCT CTA AGC 
TCT TC -3' 

5'- GGT TCC CTG TAA 
ACA TAT TGC -3' Sigma H_DIP2B_1 

ZCCHC6 
5'- AAG CTT TGC AGT ATA 
GAT CG -3' 

5'- TAG ATA TAC AGG 
CAA AAG GGG -3' Sigma H_ZCCHC6_1 

RBPJ 
5'- AAT TCA ATT TCA GGC 
CAC TC -3' 

5'- CTA ATG ATT GTC CAG 
GAA GC -3' Sigma H_RBPJ_1 

PELI1 
5'- AGG CAA TAA GCA ACA 
AAG AC -3' 

5'- GTC ATG AGT ATA TTC 
AAC CAC C -3' Sigma H_PELI1_1 

FNDC3B 
5'- CAC AGG TTT CTA ATA 
TTC AGG C -3' 

5'- CTT GTA TTT TCC ATC 
TCG TCC -3' Sigma H_FNDC3B_1 

TLR2 
5'- CTT TCA ACT GGT AGT 
TGT GG -3' 

5'- GGA ATG GAG TTT 
AAA GAT CCT G -3' Sigma H_TLR2_1 

LTBR 
5'- CAT TTC TGG AGA TGT 
TTC CC -3' 

5'- TAG ATG TTG CCA 
GTG ATA GTC -3' Sigma H_LTBR_1 

NT5C2 
5'- CAG CGA GAT GAT ACT 
GAA AG -3' 

5'- ACA ACT GGT ATA TCT 
GGG AC -3' Sigma H_NT5C2_1 
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Supplemental Table 3.4: Age and sex distribution in the three adverse events (AEs) groups. 
 
 No AEs 

(n=62) 
Mild AEs 

(n=24) 
Moderate AEs 

(n=9) 
P-value 

Age 38.5 37.4 43.2 0.58A 

Sex (male) 87.1% 87.5% 88.8% 0.99B 

 
AKruskal-Wallis H test 
BChi-squared test 
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Supplemental Table 3.5: Upregulated KEGG pathways post-treatment in individuals with 
adverse events (WebGestalt analysis). 
 
Geneset DescriptionA C O E R P-Value FDR 

hsa04380 Osteoclast differentiation 127 34 6.918 4.915 2.11E-15 6.39E-13 
hsa05152 Tuberculosis 167 33 9.097 3.628 5.25E-11 7.96E-09 
hsa05164 Influenza A 170 29 9.260 3.132 2.78E-08 2.81E-06 
hsa04666 Fc gamma R-mediated phagocytosis 91 20 4.957 4.035 5.83E-08 4.33E-06 

hsa04621 
NOD-like receptor signaling 
pathway 167 28 9.097 3.078 7.15E-08 4.33E-06 

hsa05162 Measles 133 24 7.245 3.313 1.53E-07 7.74E-06 
hsa04145 Phagosome 147 25 8.007 3.122 2.77E-07 1.15E-05 
hsa05140 Leishmaniasis 66 16 3.595 4.451 3.03E-07 1.15E-05 
hsa05134 Legionellosis 54 14 2.941 4.760 6.98E-07 2.35E-05 
hsa04064 NF-kappa B signaling pathway 89 18 4.848 3.713 1.01E-06 3.06E-05 

hsa05120 
Epithelial cell signaling in 
Helicobacter pylori infection 67 14 3.649 3.836 1.10E-05 0.00030 

hsa04062 Chemokine signaling pathway 181 25 9.859 2.536 1.38E-05 0.00035 
hsa05132 Salmonella infection 82 15 4.467 3.358 2.90E-05 0.00068 

hsa04650 
Natural killer cell mediated 
cytotoxicity 123 19 6.700 2.836 3.18E-05 0.00069 

hsa05321 Inflammatory bowel disease (IBD) 62 12 3.377 3.553 0.00010 0.00209 
hsa05168 Herpes simplex infection 177 22 9.641 2.282 0.00022 0.00423 

hsa04060 
Cytokine-cytokine receptor 
interaction 258 28 

14.05
3 1.992 0.00034 0.00602 

hsa04640 Hematopoietic cell lineage 92 14 5.011 2.794 0.00041 0.00687 
hsa05130 Pathogenic Escherichia coli infection 55 10 2.996 3.338 0.00066 0.01049 
hsa04668 TNF signaling pathway 108 15 5.883 2.550 0.00070 0.01055 
hsa04630 Jak-STAT signaling pathway 156 19 8.497 2.236 0.00077 0.01104 
hsa05145 Toxoplasmosis 110 15 5.992 2.503 0.00085 0.01166 
hsa04664 Fc epsilon RI signaling pathway 69 11 3.758 2.927 0.00113 0.01492 
hsa04662 B cell receptor signaling pathway 70 11 3.813 2.885 0.00128 0.01590 
hsa05150 Staphylococcus aureus infection 50 9 2.724 3.305 0.00131 0.01590 
hsa05133 Pertussis 72 11 3.922 2.805 0.00162 0.01889 
hsa05146 Amoebiasis 95 13 5.175 2.512 0.00179 0.02010 
hsa05160 Hepatitis C 131 16 7.136 2.242 0.00190 0.02059 
hsa05161 Hepatitis B 145 17 7.898 2.152 0.00217 0.02270 

hsa04010 MAPK signaling pathway 252 25 
13.72

6 1.821 0.00250 0.02528 
hsa04620 Toll-like receptor signaling pathway 101 13 5.501 2.363 0.00312 0.03048 
hsa04210 Apoptosis 138 16 7.517 2.129 0.00325 0.03079 
hsa04066 HIF-1 signaling pathway 102 13 5.556 2.340 0.00340 0.03124 
hsa04670 Leukocyte transendothelial migratio 116 14 6.319 2.216 0.00400 0.03565 
hsa04071 Sphingolipid signaling pathway 118 14 6.427 2.178 0.00467 0.04045 
 
AKegg pathway name. C: the number of reference genes in the category. O: the number of genes 
in the gene set and also in the category. E: the expected number in the category. R: ratio of 
enrichment. P-value: P-value from hypergeometric test. FDR: P-value adjusted by the multiple 
test adjustment. 
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Supplemental Table 3.6: Enriched transcription factor binding sites in the 744 genes 
upregulated post-treatment in individuals with adverse events. 
 
Transcription factor 
binding site 

Normalized 
enrichment score 

STAT1 7.74 
STAT2 7.23 
SPI1 6.40 
STAT3 4.43 
IRF1 4.24 
CEBPB 3.50 
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Supplemental Table 3.7: Upregulated KEGG pathways pre-treatment in individuals that did not 
develop adverse events (Gene Set Enrichment Analysis). 
 
NAMEA SIZE ES NES NOM P-val FDR q-val FWER P-val 
RIBOSOME 87 0.6840 7.4153 0.0000 0.0000 0.0000 
SPLICEOSOME 123 0.2979 3.8336 0.0000 0.0000 0.0000 
LEISHMANIA_INFECTION 70 0.3227 3.1892 0.0000 0.0000 0.0000 
PROTEASOME 44 0.3978 3.0886 0.0000 0.0000 0.0000 
PRIMARY_IMMUNODEFICIENCY 35 0.4164 2.8864 0.0000 0.0005 0.0020 
ANTIGEN_PROCESSING_AND_ 
PRESENTATION 69 0.2965 2.8473 0.0000 0.0007 0.0030 
TOLL_LIKE_RECEPTOR_ 
SIGNALING_PATHWAY 91 0.2470 2.7722 0.0000 0.0014 0.0070 
LYSOSOME 119 0.2165 2.7591 0.0000 0.0014 0.0080 
MAPK_SIGNALING_PATHWAY 257 0.1408 2.6306 0.0000 0.0019 0.0120 
CELL_CYCLE 124 0.2026 2.5813 0.0000 0.0020 0.0140 
PARKINSONS_DISEASE 109 0.2067 2.5713 0.0000 0.0018 0.0140 
CITRATE_CYCLE_TCA_CYCLE 29 0.3911 2.5363 0.0000 0.0020 0.0170 
B_CELL_RECEPTOR_ 
SIGNALING_PATHWAY 74 0.2498 2.5301 0.0000 0.0022 0.0200 
BASE_EXCISION_REPAIR 33 0.3695 2.4690 0.0000 0.0027 0.0260 
UBIQUITIN_MEDIATED_ 
PROTEOLYSIS 133 0.1820 2.4570 0.0000 0.0028 0.0290 
ALLOGRAFT_REJECTION 35 0.3364 2.3948 0.0000 0.0040 0.0440 
MISMATCH_REPAIR 23 0.3872 2.2243 0.0000 0.0103 0.1250 
PATHWAYS_IN_CANCER 321 0.1067 2.2143 0.0000 0.0101 0.1300 
GLYCOSYLPHOSPHATIDYLINOSITO
L_GPI_ANCHOR_BIOSYNTHESIS 24 0.3670 2.1778 0.0000 0.0109 0.1540 
INTESTINAL_IMMUNE_NETWORK_
FOR_IGA_PRODUCTION 46 0.2650 2.1150 0.0000 0.0140 0.2250 
NUCLEOTIDE_EXCISION_REPAIR 44 0.2599 2.0353 0.0000 0.0175 0.3240 
PYRIMIDINE_METABOLISM 95 0.1809 2.0589 0.0019 0.0164 0.2870 
ASTHMA 26 0.3816 2.3187 0.0020 0.0058 0.0680 
PURINE_METABOLISM 152 0.1494 2.1568 0.0020 0.0112 0.1710 
ALZHEIMERS_DISEASE 154 0.1454 2.0949 0.0020 0.0148 0.2430 
DNA_REPLICATION 36 0.3065 2.1809 0.0020 0.0112 0.1500 
AUTOIMMUNE_THYROID_DISEASE 39 0.2757 2.0175 0.0020 0.0183 0.3550 
FOCAL_ADHESION 196 0.1191 1.9480 0.0021 0.0254 0.4720 
HUNTINGTONS_DISEASE 169 0.1347 2.0422 0.0021 0.0172 0.3090 
GRAFT_VERSUS_HOST_DISEASE 37 0.2851 2.0825 0.0039 0.0153 0.2550 
ENDOCYTOSIS 176 0.1402 2.1739 0.0040 0.0106 0.1580 
APOPTOSIS 85 0.1914 2.0350 0.0040 0.0170 0.3240 
ACUTE_MYELOID_LEUKEMIA 57 0.2323 2.0824 0.0040 0.0148 0.2550 
OXIDATIVE_PHOSPHORYLATION 114 0.1613 2.0685 0.0041 0.0163 0.2790 
RNA_POLYMERASE 29 0.2927 1.9155 0.0043 0.0279 0.5230 
T_CELL_RECEPTOR_SIGNALING_ 
PATHWAY 106 0.1602 1.9357 0.0058 0.0259 0.4870 
AMINOACYL_TRNA_BIOSYNTHESIS 41 0.2754 2.1340 0.0077 0.0126 0.1980 
VALINE_LEUCINE_AND_ 
ISOLEUCINE_DEGRADATION 44 0.2432 1.9112 0.0080 0.0281 0.5310 
 

AKEGG pathway. Size: Number of genes in the gene set after filtering out those genes not in the 
expression dataset. ES: enrichment score for the gene set; that is, the degree to which this gene 
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set is overrepresented at the top or bottom of the ranked list of genes in the expression dataset. 
NES: normalized enrichment score; that is, the enrichment score for the gene set after it has been 
normalized across analyzed gene sets. NOM P-val: Nominal P-value; that is, the statistical 
significance of the enrichment score. The nominal P-value is not adjusted for gene set size or 
multiple hypothesis testing; therefore, it is of limited use in comparing gene sets. FDR q-val; 
false discovery rate; that is, the estimated probability that the normalized enrichment score 
represents a false positive finding. FWER P-val: Familywise-error rate; that is, a more 
conservatively estimated probability that the normalized enrichment score represents a false 
positive finding. 
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Supplemental Table 3.8: Variables in the random forest model (post-treatment fold change). 
 
Variable Average Mean Decrease in Accuracy 
LPS binding protein (LBP) 9.85 
Complement component 3 (C3) -0.66 
Circulating immune complexes (CIC) -2.35 
Complement Factor B (FB) -2.92 
Circulating filarial antigen (CFA) -4.20 
Complement component 4 (C4) -5.01 
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Preface 

This chapter was written by BJA. Comments from GJW and PUF were incorporated into the 

final version, presented here. 
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4.1 Comparison of the two sample cohorts: Papua New Guinea and Côte d'Ivoire. 

Researchers and clinician scientists have been interested in understanding the 

adverse events (AEs) that occur after lymphatic filariasis (LF) treatment for decades, but 

the pathogenesis has been difficult to define. We decided to study AEs using human 

samples that were collected in different LF treatment trials in Papua New Guinea and 

Côte d'Ivoire. The main findings from the Papua New Guinea pilot study (1) showed that 

various filarial components such as antigen and DNA are released post-treatment in 

individuals with AEs. Contrary to our hypothesis and a previously published paper (2), 

we did not observe an increase in circulating immune complexes (CICs) post-treatment in 

individuals with AEs. Additionally, we found that the cytokine response during AEs is 

complex with a large number of cytokines being released after treatment. The cytokine 

response observed in individuals with AEs was similar to the cytokine response after 

endotoxin exposure, and was therefore consistent with Wolbachia exposure. However, 

based on this study we were unable to determine what filarial or Wolbachia components 

were responsible for the immune activation, and if the host response was caused by 

phagocytosis of filarial/Wolbachia components, by direct interaction between foreign 

antigens and host cell surface receptors or by a combination of both. In order to delineate 

the immune response during AEs, we decided to look at the host gene expression before 

and after treatment in leucocytes from individuals with and without AEs. 

In order to address this question we took leverage of a clinical trial conducted in 

Côte d'Ivoire (Clinicaltrials.gov NCT # 02974049) to collect plasma and buffy coat 

samples. The RNA-seq analysis of RNA extracted from pre- and post-treatment buffy 

coat samples identified a significant transcriptional signature of post-treatment AEs in 
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LF-infected individuals. TLR and NF-κB signaling were overrepresented, and overall the 

gene expression profile was consistent with the hypothesis that the Wolbachia 

lipoprotein, PAL, signals through TLR2 (3). We also established that LPS Binding 

Protein (LBP) increases more post-treatment in individuals with AEs, and this finding 

also supports the Wolbachia/TLR2 signaling pathway. These new findings are presented 

schematically in Figure 4.1A. We confirmed the majority of the cytokine results from the 

Papua New Guinea pilot study. Additionally, we found that the classical complement 

pathway does not appear to be activated during AEs, whereas the alternative complement 

pathway is possibly involved in the development of AEs. This was supported by the fact 

that we again did not observe an increase in CIC post-treatment in individuals with AEs. 

We assed Wolbachia DNA levels in plasma by qPCR, but obtained results that were 

contradictory to published literature. Previously published studies used nested PCR to 

measure Wolbachia DNA in human plasma (4), but we feel that this method is prone to 

contamination when using field samples, so we did not attempt this approach. 

The Papua New Guinea study cohort was small with a total 24 enrolled 

participants, but it was a pharmacokinetic study so blood samples were available from 

many time points from pre-treatment up until 72 hours post-treatment (5). This repeated-

sampling from the same individuals was helpful to examine the kinetics of cytokine 

release, and to assess when filarial components were detectable in the host blood. We 

found that 24 hours post-treatment was a good time-point to measure cytokines and 

filarial components because many cytokines peaked at around this time and CFA levels 

were increased. Additionally, AEs peak at around 24-48 hours post-treatment (6-10). For 

the larger Côte d'Ivoire trial we therefore decided to collect samples pre-treatment and at 
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24 hours post-treatment. The Papua New Guinea pharmacokinetic trial was conducted in 

2014, and a collaborator had collected the blood samples. Our AE study was not the main 

focus of the pharmacokinetic trial, and this meant that we only had access to a very 

limited volume of plasma, and buffy coat samples had not been collected at all. For the 

larger clinical trial in Côte d'Ivoire I was in the field during pre-screening and for over 

one month during the enrollment period.  I collected samples and taught the team how to 

process the blood to separate the buffy coat from the plasma. I also organized the clinical 

data assessment (vital signs, review of systems, and AE data) for each individual, and 

made a database with all this information. This effort resulted in paired pre- and post-

treatment samples from over 120 treated individuals, and detailed clinical information for 

each person. This dissertation was unique in the sense that I was in a position to be 

involved in all the stages of the project; from pre-screening potential study subjects and 

preparing for the clinical trial, to enrolling and treating infected individuals in an endemic 

country, and finally conducting the bioinformatics analysis and additional laboratory 

experiments using the human samples that had been collected. Very few individuals in 

the Côte d'Ivoire trial developed moderate AEs. We selected a subset of participants to 

include in our study, and ended up with a cohort of 95 individuals including nine 

individuals with moderate AEs, 24 with mild AEs and 62 with no AEs. The AE rate was 

much higher in the Papua New Guinea cohort where out of the 24 participants 7 

developed moderate AEs, 12 developed mild AEs and 5 had no AEs (5). This drastic 

difference in AE rate and severity was likely due to the fact that the Papua New Guinea 

individuals had much higher baseline levels of Mf compared to the individuals from the 

Côte d'Ivoire cohort.  
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4.2  Circulating immune complexes and the classical complement pathway are not 

involved in the development of AEs. 

One of the hypotheses going into the project was that CIC formed after treatment 

could trigger AEs, however, we did not see an increase in CIC in the pilot study or the 

larger clinical trial study. This was surprising because a previous study had concluded 

that CIC increase post-treatment (2). An explanation for this discrepancy could be that 

CIC were measured much later after treatment in the previous study (7 days post-

treatment), whereas we measured CIC at 24 hours post-treatment in the Côte d'Ivoire 

cohort and up until 72 hours post-treatment in the Papua New Guinea cohort. It takes 

time for the immune system to generate antibodies, so perhaps CIC form later post-

treatment, but it would be difficult to attribute AEs that peak at 24 hours post-treatment to 

CIC that are formed multiple days after treatment. A 12-day course of DEC treatment 

was used in the previously published study, whereas we only treated participants once. 

The longer treatment regimen could also have led to more CIC formation.  

On the other hand, the CIC results agree with the complement data, because the 

classical complement cascade does not appear to be involved in the development of AEs, 

because C4 levels did not change post-treatment. CIC are part of the initial stage of the 

classical pathway, and can bind to the C1-complex to activate the pathway (11). Whereas 

the classical complement pathway recognizes and is activated by antigen-antibody 

complexes, the alternative pathway is much less stringent in its recognition requirements. 

In the alternative pathway spontaneous hydrolysis of C3 allows C3b to covalently attach 

to a wide range of substrates, including endotoxin and bacterial polysaccharides (12). The 

alternative complement cascade is not known to be activated by bacterial lipoproteins, 



www.manaraa.com

	 137	

such as Wolbachia PAL. However, one could easily imagine that as the parasites die and 

disintegrate post-treatment, a subset of the many released filarial and Wolbachia antigens 

could act as substrates for the promiscuous C3b, and thereby activate alternative 

complement pathway. 

 

4.3 An allergy-like host response does not appear to be involved in the development of 

AEs. 

It is well established that prominent eosinophilia and elevated serum IgE levels 

are common features of human LF infections (13). It is therefore conceivable that an 

allergy-type host response could be involved in the development of post-treatment AEs, 

because infected individuals are poised for such an immune reaction. Mast cells, 

basophils and eosinophils are essential effector cells in allergic inflammation (14). In 

order to monitor for an allergic response we measured histamine, a main effector of 

basophils and mast cells, and four different eosinophil granule proteins. Histamine was 

measured in 18 individuals (9 with moderate AEs, and 9 with no AEs) pre-treatment and 

24 hours post-treatment from the Côte d'Ivoire study cohort. Unfortunately only two 

samples had histamine levels over the detection limit of the assay, and both of those 

samples were pre-treatment. Four eosinophil granule proteins were measured: major 

basic protein (MBP), eosinophil cationic protein (ECP), eosinophil derived neurotoxin 

(EDN) and eosinophil peroxidase (EPO). For the eosinophil granule assays four 

individuals from the Papua New Guinea cohort were selected (two with moderate AEs 

and two with no AEs) and samples from 13 time-points from pre-treatment until 72 hours 

post-treatment were tested. The samples were shipped to the Nutman laboratory at the 
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NIH where the assays were performed. MBP, ECP and EDN were detected in all 

samples, whereas EPO was undetectable in all the samples. With this very limited sample 

set no differences were observed between the two AE groups, and levels of MBP, ECP 

and EDN did not change much after treatment (Dr. Thomas Nutman, personal 

communication). In onchocerciasis eosinophil granule proteins are released after 

eosinophils attach to the Mf by an adherence reaction (15). O. volvulus Mf reside in the 

skin (16), and it is unlikely that a similar eosinophil reaction occurs in the blood stream 

where W. bancrofti Mf are found. 

For the two main clinical trials described in this thesis; the pharmacokinetic study 

in Papua New Guinea and the larger clinical trial in Côte d'Ivoire, we were unable to 

complete white blood cell differential analysis for the enrolled subjects. However, in 

2016 our group conducted a pharmacokinetic study in Côte d'Ivoire (Clinicaltrials.gov 

NCT # 02845713) (17), as briefly described in chapter 3. For this study we performed 

white blood cell differentials for all enrolled subjects pre-treatment and at 24 and 48 

hours post-treatment. We did not observe any significant change in eosinophil numbers 

post-treatment, and there was no significant difference in eosinophil counts/percentages 

pre- or post-treatment between individuals with and without AEs. Half of the individuals 

in the pharmacokinetic study were uninfected, so we were able to confirm that at baseline 

individuals infected with LF have significantly higher eosinophil counts (mean 

approximately 600 eosinophils/uL) compared to uninfected individuals (mean 

approximately 300 eosinophils/uL). Based on this limited data we are unable to confirm 

or reject the hypothesis that a type IV immune response is involved in the development of 

post-treatment AEs in LF-infected individuals. 
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4.4 Current hypothesis: a range of filarial and Wolbachia antigens are released after 

treatment, and these activate the host immune system resulting in AEs. 

  We have shown that multiple filarial components, including a range of antigens 

and DNA, are released within hours after treatment, and that individuals with AEs have 

higher levels of these parasite components in their blood. We have also shown that serum 

levels of many cytokines increase after treatment, and most of these only increased in 

individuals with AEs. This cytokine profile is complex with some cytokines peaking 

within just hours after treatment (IL-12 and IL-17A); others only increase days after 

treatment (IL-7) and some remain elevated for an extended period of time (IL-6, IL-10, 

MIP-1β and IL-8). Finally, we have assessed the pathogenesis of host responses during 

AEs by examining gene expression profiles of leucocytes. The most obvious functional 

enrichments post-treatment in individuals with AEs were the TLR and NF-κB signaling 

pathways. This included upregulation of six different TLR genes (TLR1, TLR2, TLR4, 

TLR5, TLR6 and TLR8), signifying the diverse nature of possible immuno-stimulatory 

signals post-treatment. This is because each TLR recognizes specific ligands: triacylated 

lipoproteins (TLR1-TLR2), diacylated lipoproteins (TLR2-TLR6), LPS (TLR4), flagellin 

(TLR5), and ssRNA (TLR8) (18). Furthermore, many additional biological pathways 

were upregulated (Supplemental Table 3.2). For example, both phagocytic and the NOD-

like receptor signaling pathways were upregulated post-treatment in individuals with 

AEs, indicating that phagocytosis and downstream intracellular recognition of foreign 

antigens are associated with AE development. Natural killer cell mediated cytotoxicity 

and apoptosis are also both upregulated post-treatment in individuals with AEs. This 
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broad immune activation suggests that there are many different activators of the host 

response, and that no single antigen is responsible for AE development.  

It is reasonable to suspect that Wolbachia is one of the main causes of AEs in W. 

bancrofti-infected individuals, because we know that bacteria can induce strong pro-

inflammatory host responses. However, compared to the vast body of literature 

concerning bacterial molecules, virulence factors and toxins and the resulting pro-

inflammatory host responses, very little is known about how filarial nematodes can 

activate the immune system. This is turn might result in overestimation of Wolbachia 

involvement in AE development. Previous studies have concluded that live filarial Mf 

interact with dendritic cells and cause an upregulation of mRNA expression of pro-

inflammatory molecules such as IL-8, RANTES, IL-1α, TNF-α, and IL-β (19). This 

immune activation could be the results of secreted filarial proteins. It is also possible that 

uncharacterized filarial components can signal through TLRs and contribute to the 

development of AEs. For example, various protozoan ligands can signal through TLR2, 

including GPI anchors from Trypanosoma cruzi (20), Leishmania major (21), 

Plasmodium falciparum and Toxoplasma gondii (22), in addition to a T. cruzi-released 

protein (23). Uncharacterized filarial proteins could be released by injured Mf and and/or 

adult parasites after treatment and activate the host response. This hypothesis is presented 

schematically in Figure 4.1B.   

  During infection the filarial parasites manipulate the host immune system and 

induce a modified Th2 response in addition to a muted Th1 response, and this allows the 

parasites to evade host defenses (24). Filarial parasites also down-modulate expression 

and function of TLRs and MHC receptors (19, 25-27). These immunomodulatory effects 
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are active parasite responses that require energy (e.g., to produce and secrete 

immunomodulatory molecules). After treatment the parasites are injured or dead, and 

vulnerable to attack from the host immune cells. These damaged parasites are no longer 

able to manipulate the host immune response. IVM has even been shown to inhibit the 

release of immunomodulatory molecules from the parasites (28). In onchocerciasis IVM 

treatment resolves the parasite-induced immunosuppression and restores the immune 

system (29, 30). Instead of the controlled release of specific immunomodulatory 

molecules, a whole range of filarial antigens that are not normally accessible to the host 

immune system are released into the circulation, and some of these could interact with 

TLR receptors. Furthermore, a subset of the released foreign antigens could act as 

substrates for C3b and activate the alternative complement pathway. This shift from a 

chronic and controlled Th2 dominated response to an acute Th1 response may contribute 

to development of AEs.  

 

4.5 The pathogenesis of the Jarisch-Herxheimer reaction is similar to the pathogenesis 

of post-treatment AEs in LF-infected individuals. 

A phenomenon similar to the post-treatment AEs observed in LF-infected 

individuals is common after treatment of more familiar infections. This phenomenon 

where dead or dying microbes release foreign antigens after treatment that trigger pro-

inflammatory responses and result in AEs is known as the Jarisch-Herxheimer reaction. 

This reaction occurs after antibiotic treatment of spirochetal infections such as syphilis, 

Lyme disease, leptospirosis, and relapsing fever. These infections are present world-wide, 

and depending on the pathogen and the treatment course, a large percentage of 
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individuals experience the Jarisch-Herxheimer reaction post-treatment (31). Unlike the 

AEs experienced after LF-treatment, the Jarisch-Herxheimer reaction can be fatal with 

the highest risk in pregnant women and in neonates (32-34). There are many similarities 

between the AEs described in this thesis and the Jarisch-Herxheimer reaction. Non-

endotoxin antigens are also hypothesized to cause the Jarisch-Herxheimer reaction, and in 

Treponema pallidum a lipoprotein has been identified as the likely trigger for the reaction 

(35). In Borrelia burgdorferi, the outer surface protein A lipoprotein stimulates cells by 

activating TLR2-TLR6 and IL-1R signaling (36), and this is very similar to the 

transcriptional signature of post-treatment AEs covered in chapter 3. Cytokine responses 

during the Jarisch-Herxheimer reaction are also similar, with increases in TNF, IL-6, IL-8 

and IL-10 (37, 38). Finally, it has also been suggested that the alternative complement 

pathway is activated during the Jarisch-Herxheimer reaction (39). However, there are 

also significant differences between the two post-treatment conditions. For example the 

symptoms of the Jarisch-Herxheimer reaction occur much sooner after treatment; in 

syphilis they start at four hours, peak at eight hours, and subside by 16 hours post-

treatment (40), whereas in relapsing fever they starts at one-two hours, peak at four 

hours, and subside by eight hours post-treatment (41). Contrary, the AEs observed after 

LF-treatment peak at around 24-48 hours post-treatment (6-10). This is perhaps because 

many of the drugs used to treat these spirochetal infections are bactericidal (42), and 

could therefore be faster-acting than the LF drugs that interact with the host immune 

system to exert their anti-filarial effects (28, 43-45). Furthermore, bacteria may 

disintegrate much faster than nematode worms with their thick cuticle. The 

transcriptomic response during the Jarisch-Herxheimer reaction has not been studied, so 
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results from our filariasis study could provide a good starting point for studies of this 

very similar phenomenon. It is also possible that lessons learned from the Jarisch-

Herxheimer field could be applied to LF-treatment. For example pre-treatment with anti-

TNF antibodies has been shown to significantly decrease the rates of adverse reactions 

after treatment of relapsing fever (46, 47). However, using anti-TNF antibodies for 

treatment or prevention of post-treatment AEs in LF-infected individuals as part of the 

large MDA programs is not feasible, because the AEs are mostly mild to moderate and 

anti-TNF treatments are very expensive (48).  

 

4.6  Multiple antigens that contain the AD12 epitope circulate in the blood after 

treatment. 

In both the Papua New Guinea and Côte d'Ivoire cohorts we found that plasma 

levels of circulating filarial antigen (CFA) increased 24-48 hours post-treatment in 

individuals with AEs. Previous studies had described an increase in CFA levels 5-7 days 

post-treatment (49, 50), but it was not known that CFA levels increase so soon after 

treatment. This was also the first report of an association between post-treatment CFA 

levels and the development of AEs. In the Côte d'Ivoire study we additionally discovered 

that it was a whole range of different filarial proteins with the AD12 epitope that were 

released post-treatment, and these lower weight AD12 antigens were not present pre-

treatment. This finding was surprising, because only the high molecular weight CFA had 

previously been detected in the blood of W. bancrofti-infected individuals (51, 52). 

Diagnostic tests for W. bancrofti that use the AD12 antibody against a carbohydrate 

epitope on CFA are widely used (53). The current test used by the Global Program to 



www.manaraa.com

	 144	

Eliminate LF (GPELF) is the Alere Filariasis Test Strip (FTS) (54), but previously the 

immunochromatographic card test (ICT) (52) was used to detect this antigen. The new 

finding that multiple filarial antigens with the AD12 epitope are present in the blood post-

treatment may help to explain the fact that some patients with heavy L. loa infections test 

positive for filarial CFA (55). Individuals infected with L. loa sometimes have 

exceptionally high parasite loads in their blood with Mf counts that can exceed 100,000 

per mL (16). L. loa parasites cleared by the immune system may release crossreactive 

antigens that do not normally circulate in the blood of infected individuals. The 

carbohydrate epitope detected by the AD12 antibody is present on many nematode  

proteins and not limited to W. bancrofti (56), so it would not be surprising if this epitope  

were also present in antigens released when L. loa Mf die. Antigens immunoprecipated 

with antibody AD12 (as described in section 3.5) from plasma of L. loa infected 

individuals with false positive FST/ICT tests produce a similar pattern by Western blot to 

antigens present in W. bancrofti post-treatment sera in Figure 3.5B (Dr. Philip Budge, 

personal communication). This finding has a potential impact on GPELF, because neither 

IVM nor DEC can be used safely in MDA campaigns in areas that are co-endemic for W. 

bancrofti and L. loa because of the risk of serious AEs in people with heavy L. loa 

infections (57, 58). Cross-reactivity of sera from people with L. loa infections in the 

filarial CFA test limits the value of this important diagnostic test in such areas. 

Fortunately, areas highly endemic for loiasis are restricted to a few countries in central 

Africa (59).  
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4.7 The search for a pre-treatment bio-marker associated with the development of post-

treatment AEs. 

One goal of this project was to delineate the pathogenesis of post-treatment AEs 

by studying the host response during AEs. However, during the course of the project we 

were interested to identify pre-treatment biomarkers or transcriptional profiles associated 

with the development of post-treatment AEs. Eotaxin-1 was a promising candidate 

identified in the Papua New Guinea pilot study, because baseline levels in individuals 

who would go on to develop moderate AEs after treatment were significantly higher than 

in individuals who had mild or no AEs (Figure 2.2). Unfortunately this result was not 

confirmed in the larger sample cohort from Côte d'Ivoire. A possible explanation for this 

disparity might be that the Papua New Guinea study participants had much higher 

baseline Mf levels, and the moderate AEs in this group were more severe than the 

moderate AEs in the Côte d'Ivoire study. All seven of the individuals in the moderate AE 

group in the Papua New Guinea study had temperatures > 38°C after treatment, whereas 

only three of nine individuals with moderate AEs in the Côte d'Ivoire study had 

temperatures > 38°C. The maximum temperature recoded in the Côte d'Ivoire study was 

38.5°C, whereas the maximum temperature recoded in the Papua New Guinea study was 

39.7°C, and four of the seven Papua New Guinea individuals with moderate AEs had 

temperatures > 39°C. However, the temperature data for the two studies are not fully 

comparable, because axillary temperatures were recorded in the Côte d'Ivoire study, and 

oral temperatures were recorded in the Papua New Guinea study. Thus, individuals in the 

moderate AE group in the Côte d'Ivoire study were probably similar to the individuals in 

the mild AE category in the Papua New Guinea study. Also, there was no significant 
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difference in baseline eotaxin-1 levels between the mild AE and the no AE groups in the 

Papua New Guinea study. Therefore, it is conceivable that eotaxin-1 might be a 

biomarker for AEs, but only for more severe presentations with high fevers. The bottom 

line here is that no cytokine was identified as a risk factor for developing AEs after 

treatment in the Cote d’Ivoire study.  

Based on results from the multiple logistic regression model, the best pre-

treatment predictor for AE development was baseline CFA level, and this variable was 

better at predicting AEs than the baseline Mf counts. Multiple previous studies have 

described the association between high baseline Mf loads and the development of AEs 

(49, 60). CFA is already a widely used marker of W. bancrofti-infection, and it is 

currently measured with the FTS diagnostic test. The FTS has many advantages over the 

microscopy required to visualize and quantify Mf in the blood. Advantages include the 

fact that day blood can be used for the FTS, whereas night blood has to be collected for 

Mf testing. Mf microscopy also requires trained personnel, electricity, and good quality 

equipment (61). The FTS is much easier and only takes 10-15 minutes to complete. The 

intensity of the test line in the FTS (scored visually or by densitometry) is correlated with 

filarial antigen levels as measured by ELISA (62). Thus FTS scores may be useful in the 

field for identifying individuals with increased risk of AEs after LF-treatment who might 

benefit from post-treatment paracetamol or ibuprofen.  
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4.8  Is there a pre-treatment transcriptional signature that is associated with the 

development of AEs after treatment of lymphatic filariasis?  

This study was not specifically designed to identify a pre-treatment transcriptional 

signature that could predict AEs. We were not able to identify a single gene that was 

significantly predictive for development of post-treatment AEs. That would require many 

more samples than we had in this study.  To get around this we used Gene Set 

Enrichment Analysis (GSEA) as described in section 3.5. With this method we were able 

to identify biological pathways that were overrepresented in the two pre-treatment AE 

groups. As discussed in chapter 3, pre-treatment samples from individuals who did not 

develop AEs were enriched for various B-cell pathways, and this finding was in 

agreement with the CIBERSORT data, that showed that memory B-cells were 

significantly higher pre-treatment in individuals who did not develop AEs. Additionally, 

these data were also consistent with the GeneQuery results that identified multiple B-cell 

signatures to be similar to the gene expression profile pre-treatment in people who did not 

develop AEs after treatment. This finding was surprising, and it is difficult to explain. 

Perhaps individuals with immune systems primed for humoral responses are protected 

from AEs. Another explanation could be that individuals with stronger humoral immune 

responses are better at clearing Mf, and as a result of lower Mf levels pre-treatment 

therefore experience fewer AEs after treatment. However, the RNA-seq data was 

obtained from nine matched-control subjects that did not significantly differ in baseline 

Mf levels between individuals that developed AEs and individuals that did not develop 

AEs. It is also difficult to understand how this information could be used by GPELF. It 

would be interesting to test whether AE rates following treatment of LF are decreased in 
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persons who have recently received vaccines that induce vigorous antibody responses to 

microbial antigens. It would be difficult to do this in practice, because vaccine programs 

usually target children and AEs following MDA for LF are more common in adults.  

There was no clear pattern in the pathways overrepresented in pre-treatment 

samples from individuals who developed post-treatment AEs. However, two pathways 

identified by GSEA were associated with the cytochrome P450 pathway. Cytochrome 

P450 enzymes metabolize endogenous and exogenous chemicals including many drugs  

(63). This finding was surprising, because the two microfilaricidal drugs IVM and DEC 

do not have active metabolites that need cytochrome P450 to be activated. IVM is 

actually metabolized into inactive metabolites by cytochrome P450 (64), whereas DEC is 

metabolized independently of cytochrome P450 (65). ALB, on the other hand, is a 

prodrug, and it is metabolized by cytochrome P450 into its active metabolite albendazole 

sulfoxide (66). Albendazole sulfoxide is then further metabolized into the inactive 

albendazole sulfone by cytochrome P450 (66). However, both albendazole and 

albendazole sulfoxide have very limited short term effects on Mf or adult filarial 

parasites, and AE rates after ALB treatment in LF-infected individuals are very low (67). 

Consequently, increased pre-treatment levels of cytochrome P450 might result in faster 

breakdown of the AE-causing mircrofilaricidal drug, IVM. This might be expected to 

decrease drug levels, anti-filarial activity, and the rate and severity of AEs. Thus the 

observed GSEA results are unexpected and for now, unexplained. Additional studies will 

have to be conducted to verify whether there is any link between cytochrome P450 and 

post-treatment AEs in LF-infected individuals. 
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4.9 Future directions. 

A possible future study would be to investigate AE-associated genes and 

cytokines in in vivo or in vitro models. Peripheral blood mononuclear cells (PBMCs) 

from LF-infected individuals could be stimulated with different filarial-worm 

components or whole filarial extract, and responses could be assessed by qRT-PCR and 

cytokine ELISAs. The main problem with this approach would be to obtain the PMBCs 

from LF-infected individuals, because it is very difficult to isolate and preserve PBMCs 

in endemic countries due to the lack of laboratory facilities in the remote areas where 

parasite densities and the risk of AEs are the highest. Another possible approach would 

be to develop an animal model for treatment-induced AEs in LF. The most appropriate 

model would be the L. sigmondontis mouse model (68, 69). An advantage of this model 

is that the mouse is a permissive host that develops an adaptive immune response to the 

parasite (70). Tools are readily available for measuring gene expression and cytokine 

levels in mice, and studies with various knock-out mice, such as TLR knock-outs, could 

be very informative. A disadvantage of this model is that the mice naturally clear the 

infection after 3-4 months (71). Also maintenance of the life cycle in the laboratory is 

challenging, because it requires both cotton rats (difficult to use in the USA) and mites 

(72).  Another suitable model would be the B. malayi-gerbil model of infection (73). An 

advantage of this model is that B. malayi is one of the three filarial parasites that cause 

LF in humans, and it is very similar to the other two species (74). Additionally, the gerbil 

is also a permissive host for the Wolbachia-free filarial parasite A. viteae (75). By 

comparing post-treatment AE presentations in these two gerbil models, one could identify 

the contribution of Wolbachia to the development of AEs. The gerbil model is easier to 
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maintain in the laboratory than the L. sigmodontis mouse model, because B. malayi and 

A. viteae-infected gerbils can be purchased (76), and the whole lifecycle does not have to 

be maintained. A disadvantage of the gerbil model is the tools for genetic studies are 

limited compared to those for mice, and there are no knockouts available. Neither of 

these models has been used to study AEs after anti-filarial treatment, although it is known 

that infected gerbils experience AEs after DEC treatment (77). 

This study represents the first RNA-seq analysis of LF-infected individuals, and 

we were therefore not able to answer all the important questions and complete all the 

relevant comparisons in this one study. An important comparison that needs to be 

completed is to compare gene expression profiles of LF-infected and uninfected 

individuals. This has previously been done with microarrays (78), as mentioned in the 

introduction. If we added uninfected individuals who were treated with ALB/IVM or 

IDA as a control group, this could help us to weed out genes that change expression 

following treatment in uninfected people. Samples for this type of study are already 

available, because pre- and post-treatment buffy coat samples were collected during the 

Côte d'Ivoire pharmacokinetic trial (Clinicaltrials.gov NCT # 02845713) (17) where W. 

bancrofti-infected and uninfected individuals were treated with IDA. It would also be 

interesting to look at gene expression and infection status (both antigen and Mf) from the 

individuals in our study at one and/or two years post-treatment. This would enable us to 

identify changes in gene expression that occur following successful treatment.  One 

challenge with this idea is that most people treated with one or two doses of IDA or 

ALB/IVM do not completely clear the infection as they remain antigen positive even if 

they are Mf negative. Another interesting analysis would be do look at the gene 
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expression profiles at 24 hours post-treatment to identify any difference in host responses 

between the individuals that successfully cleared their Mf at one or two years post-

treatment, and the individuals that had suboptimal treatment responses. 

The methodology used for this project could be adapted to other neglected 

tropical diseases, including the two filarial parasites that cause the most severe post-

treatment AEs: O. volvulus and L. loa (57, 58, 79). L. loa does not contain Wolbachia, so 

it would be very interesting to see if host responses during AEs in L. loa-infected 

individuals differ from those that occur in W. bancrofti-infected individuals. Serious AEs 

in L. loa-infected individuals often occur in the central nervous system, and such AEs are 

not seen after treatment W. bancrofti. However, is not clear whether peripheral blood 

leukocytes would be informative for studies of CNS AEs following treatment of loiasis. 

The main AEs in O. volvulus-infected individuals are skin-related as the adult parasites 

live in the subcutaneous tissue and the Mf live in the upper dermis (16). For 

onchocerciasis it might therefore be interesting to collect skin snips of healthy tissue and 

from tissue affected by AEs. These samples could be from the same individual, and that 

could eliminate inter-individual differences and resulting noise in the RNA-seq data.  

 

4.10 Conclusions. 

Overall the rate of AEs in LF MDA programs might seem low, because AEs 

mainly occur in infected individuals. Additionally, one might argue that most AEs that do 

occur are mild and that they should not be of great concern for researchers or health 

officials. However, an astounding 6 billion LF MDA treatments have been delivered to 

hundreds of millions of individuals across the globe, and even mild or moderate AEs can 
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have a huge impact on the success of LF elimination programs based on MDA. This 

dissertation research has described changes in host gene expression and cytokine profiles 

associated with post-treatment AEs in LF-infected individuals, and the work has 

identified pathways that could be targeted to decrease or eliminate AEs, such as TLR2, 

NF-κB, TNF and the STAT transcription factors. TLR2, NF-κB, and STAT have all been 

identified as possible cancer drug targets (80-82), and anti-TNF antibodies are widely 

used to treat autoimmune disorders, so maybe developments in these other fields will 

benefit LF patients in the future. Widespread use of expensive molecularly targeted 

therapy is obviously not well suited for the huge global LF program, but such treatments 

might be used in the small number of persons who experience serious AEs. Our results 

are consistent with the hypothesis that Wolbachia lipoprotein activates TLR2-TLR6 

resulting in AEs, but additional uncharacterized filarial antigens are probably also 

involved (Figure 4.1). Finally, based on the knowledge learned from this dissertation we 

will now be able reassure endemic populations and communicate to them that the AEs 

experienced after LF treatment are evidence that the medications that they have taken are 

working and killing harmful parasites in their bodies.  
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Figure 4.1: Proposed signaling pathway of Wolbachia and filarial antigens. 

[A] An updated overview of the proposed mechanisms by which Wolbachia contributes to the 
pathogenesis of adverse events after LF treatment. [B] An overview of the proposed mechanisms 
by which uncharacterized filarial antigens contribute to the pathogenesis of adverse events after 
LF treatment.  
Figure is adapted from Taylor MJ, Cross HF, Ford L, Makunde WH, Prasad GB, and Bilo K. 
Wolbachia bacteria in filarial immunity and disease. Parasite Immunol. 2001;23(7):401-9. 
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